Skip to main content
    • Aa
    • Aa

Disentangling the origins of torque enhancement through wall roughness in Taylor–Couette turbulence

  • Xiaojue Zhu (a1), Roberto Verzicco (a1) (a2) and Detlef Lohse (a1) (a3)

Direct numerical simulations (DNS) are performed to analyse the global transport properties of turbulent Taylor–Couette flow with inner rough wall up to Taylor number $Ta=10^{10}$ . The dimensionless torque $Nu_{\unicode[STIX]{x1D714}}$ shows an effective scaling of $Nu_{\unicode[STIX]{x1D714}}\propto Ta^{0.42\pm 0.01}$ , which is steeper than the ultimate regime effective scaling $Nu_{\unicode[STIX]{x1D714}}\propto Ta^{0.38}$ seen for smooth inner and outer walls. It is found that at the inner rough wall, the dominant contribution to the torque comes from the pressure forces on the radial faces of the rough elements; while viscous shear stresses on the rough surfaces contribute little to $Nu_{\unicode[STIX]{x1D714}}$ . Thus, the log layer close to the rough wall depends on the roughness length scale, rather than on the viscous length scale. We then separate the torque contributed from the smooth inner wall and the rough outer wall. It is found that the smooth wall torque scaling follows $Nu_{s}\propto Ta_{s}^{0.38\pm 0.01}$ , in excellent agreement with the case where both walls are smooth. In contrast, the rough wall torque scaling follows $Nu_{r}\propto Ta_{r}^{0.47\pm 0.03}$ , very close to the pure ultimate regime scaling $Nu_{\unicode[STIX]{x1D714}}\propto Ta^{1/2}$ . The energy dissipation rate at the wall of an inner rough cylinder decreases significantly as a consequence of the wall shear stress reduction caused by the flow separation at the rough elements. On the other hand, the latter shed vortices in the bulk that are transported towards the outer cylinder and dissipated. Compared to the purely smooth case, the inner wall roughness renders the system more bulk dominated and thus increases the effective scaling exponent.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Ahlers , S. Grossmann  & D. Lohse 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.

F. Busse 2012 Viewpoint: the twins of turbulence research. Physics 5, 4.

S. Ciliberto  & C. Laroche 1999 Random roughness of boundary increases the turbulent scaling exponents. Phys. Rev. Lett. 82, 39984001.

Y.-B. Du  & P. Tong 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.

B. Eckhardt , S. Grossmann  & D. Lohse 2007a Fluxes and energy dissipation in thermal convection and shear flows. Europhys. Lett. 78, 24001.

B. Eckhardt , S. Grossmann  & D. Lohse 2007b Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.

E. A. Fadlun , R. Verzicco , P. Orlandi  & J. Mohd-Yusof 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 3560.

D. P. M. van Gils , S. G. Huisman , G.-W. Bruggert , C. Sun  & D. Lohse 2011 Torque scaling in turbulent Taylor–Couette flow with co- and counterrotating cylinders. Phys. Rev. Lett. 106, 024502.

S. Grossmann  & D. Lohse 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.

S. Grossmann  & D. Lohse 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 33163319.

S. Grossmann  & D. Lohse 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 4462.

S. Grossmann  & D. Lohse 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.

S. Grossmann , D. Lohse  & C. Sun 2014 Velocity profiles in strongly turbulent Taylor–Couette flow. Phys. Fluids 26 (2), 025114.

S. Grossmann , D. Lohse  & C. Sun 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.

X. He , D. Funfschilling , E. Bodenschatz  & G. Ahlers 2012a Heat transport by turbulent Rayleigh–Bénard convection for Pr ≃ 0. 8 and 4 × 1011Ra ≲ 2 × 1014 : ultimate-state transition for aspect ratio 𝛤 = 1. 00. New J. Phys. 14, 063030.

X. He , D. Funfschilling , H. Nobach , E. Bodenschatz  & G. Ahlers 2012b Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.

S. G. Huisman , D. P. M. van Gils , S. Grossmann , C. Sun  & D. Lohse 2012 Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.

S. G. Huisman , S. Scharnowski , C. Cierpka , C. J. Kähler , D. Lohse  & C. Sun 2013 Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110, 264501.

T. Ikeda  & P. A. Durbin 2007 Direct simulations of a rough-wall channel flow. J. Fluid Mech. 571, 235263.

R. H. Kraichnan 1962 Turbulent thermal convection at arbritrary Prandtl number. Phys. Fluids 5, 13741389.

D. P. Lathrop , J. Fineberg  & H. L. Swinney 1992 Turbulent flow between concentric rotating cylinders at large Reynolds number. Phys. Rev. Lett. 68, 15151518.

R. Ostilla-Mónico , E. P. van der Poel , R. Verzicco , S. Grossmann  & D. Lohse 2014a Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.

R. Ostilla-Mónico , E. P. van der Poel , R. Verzicco , S. Grossmann  & D. Lohse 2014b Phase diagram of turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.

R. Ostilla-Mónico , R. Verzicco , S. Grossmann  & D. Lohse 2016 The near-wall region of highly turbulent Taylor–Couette flow. J. Fluid Mech. 788, 95117.

E. P. van der Poel , R. Ostilla-Mónico , J. Donners  & R. Verzicco 2015 A pencil distributed code for simulating wall-bounded turbulent convection. Comput. Fluids 116, 1016.

S. B. Pope 2000 Turbulent Flows. Cambridge University Press.

Y. Shen , P. Tong  & K.-Q. Xia 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76, 908911.

G. Stringano , G. Pascazio  & R. Verzicco 2006 Turbulent thermal convection over grooved plates. J. Fluid Mech. 557, 307336.

J. C. Tisserand , M. Creyssels , Y. Gasteuil , H. Pabiou , M. Gibert , B. Castaing  & F. Chillà 2011 Comparison between rough and smooth plates within the same Rayleigh–Bénard cell. Phys. Fluids 23, 015105.

R. Verzicco  & P. Orlandi 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402413.

P. Wei , T.-S. Chan , R. Ni , X.-Z. Zhao  & K.-Q. Xia 2014 Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J. Fluid Mech. 740, 2846.

E.-S. Zanoun , H. Nagib  & F. Durst 2009 Refined c f relation for turbulent channels and consequences for high-Re experiments. Fluid Dyn. Res. 41 (2), 021405.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 175 *
Loading metrics...

Abstract views

Total abstract views: 249 *
Loading metrics...

* Views captured on Cambridge Core between 22nd December 2016 - 23rd September 2017. This data will be updated every 24 hours.