Skip to main content
×
Home
    • Aa
    • Aa

Dynamic simulation of hydrodynamically interacting suspensions

  • John F. Brady (a1), Ronald J. Phillips (a2), Julia C. Lester (a1) and Georges Bossis (a3)
Abstract

A general method for computing the hydrodynamic interactions among an infinite suspension of particles, under the condition of vanishingly small particle Reynolds number, is presented. The method follows the procedure developed by O'Brien (1979) for constructing absolutely convergent expressions for particle interactions. For use in dynamic simulation, the convergence of these expressions is accelerated by application of the Ewald summation technique. The resulting hydrodynamic mobility and/or resistance matrices correctly include all far-field non-convergent interactions. Near-field lubrication interactions are incorporated into the resistance matrix using the technique developed by Durlofsky, Brady & Bossis (1987). The method is rigorous, accurate and computationally efficient, and forms the basis of the Stokesian-dynamics simulation method. The method is completely general and allows such diverse suspension problems as self-diffusion, sedimentation, rheology and flow in porous media to be treated within the same formulation for any microstructural arrangement of particles. The accuracy of the Stokesian-dynamics method is illustrated by comparing with the known exact results for spatially periodic suspensions.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax
Type Description Title
PDF
Supplementary Materials

Brady et al. supplementary material
Appendix

 PDF (708 KB)
708 KB