Skip to main content
×
Home
    • Aa
    • Aa

Finite amplitude cellular convection

  • W. V. R. Malkus (a1) and G. Veronis (a1)
Abstract

When a layer of fluid is heated uniformly from below and cooled from above, a cellular regime of steady convection is set up at values of the Rayleigh number exceeding a critical value. A method is presented here to determine the form and amplitude of this convection. The non-linear equations describing the fields of motion and temperature are expanded in a sequence of inhomogeneous linear equations dependent upon the solutions of the linear stability problem. We find that there are an infinite number of steady-state finite amplitude solutions (having different horizontal plan-forms) which formally satisfy these equations. A criterion for ‘relative stability’ is deduced which selects as the realized solution that one which has the maximum mean-square temperature gradient. Particular conclusions are that for a large Prandtl number the amplitude of the convection is determined primarily by the distortion of the distribution of mean temperature and only secondarily by the self-distortion of the disturbance, and that when the Prandtl number is less than unity self-distortion plays the dominant role in amplitude determination. The initial heat transport due to convection depends linearly on the Rayleigh number; the heat transport at higher Rayleigh numbers departs only slightly from this linear dependence. Square horizontal plan-forms are preferred to hexagonal plan-forms in ordinary fluids with symmetric boundary conditions. The proposed finite amplitude method is applicable to any model of shear flow or convection with a soluble stability problem.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Altmetric attention score