Skip to main content
×
Home
    • Aa
    • Aa

Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection

  • RICHARD J. A. M. STEVENS (a1), ROBERTO VERZICCO (a2) and DETLEF LOHSE (a1)
Abstract

Results from direct numerical simulation (DNS) for three-dimensional Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1/2 and Prandtl number Pr=0.7 are presented. They span five decades of Rayleigh number Ra from 2 × 106 to 2 × 1011. The results are in good agreement with the experimental data of Niemela et al. (Nature, vol. 404, 2000, p. 837). Previous DNS results from Amati et al. (Phys. Fluids, vol. 17, 2005, paper no. 121701) showed a heat transfer that was up to 30% higher than the experimental values. The simulations presented in this paper are performed with a much higher resolution to properly resolve the plume dynamics. We find that in under-resolved simulations the hot (cold) plumes travel further from the bottom (top) plate than in the better-resolved ones, because of insufficient thermal dissipation mainly close to the sidewall (where the grid cells are largest), and therefore the Nusselt number in under-resolved simulations is overestimated. Furthermore, we compare the best resolved thermal boundary layer profile with the Prandtl–Blasius profile. We find that the boundary layer profile is closer to the Prandtl–Blasius profile at the cylinder axis than close to the sidewall, because of rising plumes close to the sidewall.

Copyright
Corresponding author
Email address for correspondence: r.j.a.m.stevens@tnw.utwente.nl
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Ahlers , S. Grossmann & D. Lohse 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.

G. Amati , K. Koal , F. Massaioli , K. R. Sreenivasan & R. Verzicco 2005 Turbulent thermal convection at high Rayleigh numbers for a constant-Prandtl-number fluid under Boussinesq conditions. Phys. Fluids 17, 121701.


X. Chavanne , F. Chilla , B. Castaing , B. Hebral , B. Chabaud & J. Chaussy 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.

X. Chavanne , F. Chilla , B. Chabaud , B. Castaing & B. Hebral 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.

D. Funfschilling , E. Bodenschatz & G. Ahlers 2009 Search for the ‘ultimate state’ in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 014503.



S. Grossmann & D. Lohse 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.

S. Grossmann & D. Lohse 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.

G. Grötzbach 1983 Spatial resolution for direct numerical simulations of Rayleigh–Bénard convection. J. Comput. Phys. 49, 241264.

F. Heslot , B. Castaing & A. Libchaber 1987 Transition to turbulence in helium gas. Phys. Rev. A 36, 58705873.

H. Johnston & C. R. Doering 2009 Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102, 064501.


R. H. Kraichnan 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.

R. P. J. Kunnen , H. J. H. Clercx , B. J. Geurts , L. J. A. Bokhoven , R. A. D. Akkermans & R. Verzicco 2008 A numerical and experimental investigation of structure function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.

D. Lohse & F. Toschi 2003 The ultimate state of thermal convection. Phys. Rev. Lett. 90, 034502.

D. Lohse & K. Q. Xia 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.

J. Niemela , L. Skrbek , K. R. Sreenivasan & R. Donnelly 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.




P. E. Roche , B. Castaing , B. Chabaud & B. Hebral 2002 Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection. Europhys. Lett. 58, 693698.


X. D. Shang , P. Tong & K.-Q. Xia 2008 Scaling of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 100, 244503.

O. Shishkina & C. Wagner 2007 Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys Fluids. 19, 085107.

B. I. Shraiman & E. D. Siggia 1990 Heat transport in high-Rayleigh number convection. Phys. Rev. A 42, 36503653.

E. A. Spiegel 1971 Convection in stars. Annu. Rev. Astron. Astrophys. 9, 323352.




R. Verzicco & P. Orlandi 1996 A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402413.


J.-Q. Zhong , R. J. A. M. Stevens , H. J. H. Clercx , R. Verzicco , D. Lohse & G. Ahlers 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Stevens et al. supplementary movie
Temperature field at mid height for the simulations at Ra = 2 x 109, Pr = 0.7, and G = 0.5 with grid resolution 129 x 65 x 257. The dimensionless time is indicated in the top of the movie. Note that in this low resolution simulation the smoothness of the solution is insufficient to represent all flow dynamics observed in a high resolution simulation.

 Video (3.5 MB)
3.5 MB
VIDEO
Movies

Stevens et al. supplementary movie
Temperature field at mid height for the simulations at Ra = 2 x 109, Pr = 0.7, and G = 0.5 with grid resolution 193 x 65 x 257. The dimensionless time is indicated in the top of the movie.

 Video (3.5 MB)
3.5 MB
VIDEO
Movies

Stevens et al. supplementary movie
Temperature field close to the bottom plate for the simulations at Ra = 2 x 109, Pr = 0.7, and G = 0.5, with grid resolution 193 x 65 x 257 (heights: 0.0021L, 0.0049L, 0.0079L, 0.0111L, and here lqsl=0.0059L). The dimensionless time is indicated in the top of the movie.

 Video (9.8 MB)
9.8 MB
VIDEO
Movies

Stevens et al. supplementary movie
Temperature field close to the bottom plate for the simulations at Ra = 2 x 109, Pr = 0.7, and G = 0.5, with grid resolution 129 x 65 x 257 (heights: 0.0021L, 0.0049L, 0.0079L, 0.0111L, and here lqsl=0.0056L). The dimensionless time is indicated in the top of the movie. Note that in this low resolution simulation the smoothness of the solution is insufficient to represent all flow dynamics observed in a high resolution simulation.

 Video (9.9 MB)
9.9 MB
VIDEO
Movies

Stevens et al. supplementary movie
Temperature field close to the bottom plate for the simulations at Ra = 2 x 109, Pr = 0.7, and G = 0.5, with grid resolution 385 x 97 x 385 (heights: 0.0020L, 0.0044L, 0.0077L, 0.0112L, and here lqsl=0.0059L). The dimensionless time is indicated in the top of the movie.

 Video (7.7 MB)
7.7 MB
VIDEO
Movies

Stevens et al. supplementary movie
Temperature field at mid height for the simulations at Ra = 2 x 109, Pr = 0.7, and G = 0.5 with grid resolution 385 x 97 x 385. The dimensionless time is indicated in the top of the movie.

 Video (3.3 MB)
3.3 MB