Skip to main content
×
Home
    • Aa
    • Aa

Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth

  • Juan A. Zufiria (a1)
Abstract

A weakly nonlinear model is developed from the Hamiltonian formulation of water waves, to study the bifurcation structure of gravity-capillary waves on water of finite depth. It is found that, besides a very rich structure of symmetric solutions, non-symmetric Wilton's ripples exist. They appear via a spontaneous symmetrybreaking bifurcation from symmetric solutions. The bifurcation tree is similar to that for gravity waves. The solitary wave with surface tension is studied with the same model close to a critical depth. It is found that the solution is not unique, and that further non-symmetric solitary waves are possible. The bifurcation tree has the same structure as for the case of periodic waves. The possibility of checking these results in low-gravity experiments is postulated.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax