Skip to main content
×
Home
    • Aa
    • Aa

Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow

  • F. MELLIBOVSKY (a1) and B. ECKHARDT (a2) (a3)
Abstract

The appearance of travelling-wave-type solutions in pipe Poiseuille flow that are disconnected from the basic parabolic profile is numerically studied in detail. We focus on solutions in the twofold azimuthally-periodic subspace because of their special stability properties, but relate our findings to other solutions as well. Using time-stepping, an adapted Krylov–Newton method and Arnoldi iteration for the computation and stability analysis of relative equilibria, and a robust pseudo-arclength continuation scheme, we unfold a double-zero (Takens–Bogdanov) bifurcating scenario as a function of Reynolds number (Re) and wavenumber (κ). This scenario is extended, by the inclusion of higher-order terms in the normal form, to account for the appearance of supercritical modulated waves emanating from the upper branch of solutions at a degenerate Hopf bifurcation. We provide evidence that these modulated waves undergo a fold-of-cycles and compute some solutions on the unstable branch. These waves are shown to disappear in saddle-loop bifurcations upon collision with lower-branch solutions, in accordance with the bifurcation scenario proposed. The travelling-wave upper-branch solutions are stable within the subspace of twofold periodic flows, and their subsequent secondary bifurcations could contribute to the formation of the phase space structures that are required for turbulent dynamics at higher Re.

Copyright
Corresponding author
Email address for correspondence: fmellibovsky@fa.upc.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. Barkley 1990 Theory and predictions for finite-amplitude waves in two-dimensional plane Poiseuille flow. Phys. Fluids A 2 (6), 955970.

L. Boberg & U. Brosa 1988 Onset of turbulence in a pipe. Z. Naturforsch. A: Phys. Sci. 43, 697726.

R. Bogdanov 1975 Versal deformations of a singular point on the plane in the case of zero eigenvalues. Funct. Anal. Appl. 9, 144145.

U. Brosa & S. Grossmann 1999 Minimum description of the onset of pipe turbulence. Eur. Phys. J. B 9 (2), 343354.


Y. Duguet , C. C. T. Pringle & R. R. Kerswell 2008 aRelative periodic orbits in transitional pipe flow. Phys. Fluids 20 (11), 114102.


F. Dumortier , R. Roussarie , J. Sotomayor & H. Zoladek 1991 Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals. Springer.

B. Eckhardt 2009 Introduction. Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds' paper. Phil. Trans. R. Soc. Lond. A 367, 449455.

B. Eckhardt , H. Faisst , A. Schmiegel & T. M. Schneider 2008 Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. Lond. A 366, 12971315.

B. Eckhardt , T. M. Schneider , B. Hof & J. Westerweel 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.

U. Ehrenstein & W. Koch 1995 Homoclinic bifurcation in Blasius boundary-layer flow. Phys. Fluids 7, 12821291.

H. Faisst & B. Eckhardt 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91 (22), 224502.

P. Gaspard 1990 Measurement of the instability rate of a far-from-equilibrium steady state at an infinite period bifurcation. J. Phys. Chem. 94 (1), 13.

M. Golubitsky , V. G. LeBlanc & I. Melbourne 2000 Hopf bifurcation from rotating waves and patterns in physical space. J. Nonlinear Sci. 10 (1), 69101.

S. Grossmann 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72 (2), 603618.

J. Guckenheimer & P. Holmes 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.

B. Hof , C. W. H. van Doorne , J. Westerweel , F. T. M. Nieuwstadt , H. Faisst , B. Eckhardt , H. Wedin , R. R. Kerswell & F. Waleffe 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305 (5690), 15941598.

B. Hof , T. M. Schneider , J. Westerweel & B. Eckhardt 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.


E. Knobloch 1986 Normal forms for bifurcations at a double zero eigenvalue. Phys. Lett. A 115 (5), 199201.

M. Krupa 1990 Bifurcations of relative equilibria. SIAM J. Math. Anal. 21 (6), 14531486.

Y. A. Kuznetsov 1995 Elements of Applied Bifurcation Theory, 3rd edn.Springer.

C. K. Mamun & L. S. Tuckerman 1995 Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7 (1), 8091.

K. Meerbergen , A. Spence & D. Roose 1994 Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric. BIT 34 (3), 409423.

F. Mellibovsky & A. Meseguer 2009 Critical threshold in pipe flow transition. Phil. Trans. R. Soc. Lond. A 367, 545560.

A. Meseguer , M. Avila , F. Mellibovsky & P. Marques 2007 Solenoidal spectral formulations for the computation of secondary flows in cylindrical and annular geometries. Eur. Phys. J. Special Topics 146, 249259.

A. Meseguer & F. Mellibovsky 2007 On a solenoidal Fourier–Chebyshev spectral method for stability analysis of the Hagen–Poiseuille flow. Appl. Numer. Maths 57, 920938.

A. Meseguer & L. N. Trefethen 2003 Linearized pipe flow to Reynolds number 107. J. Comput. Phys. 186, 178197.

M. Nagata 1997 Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55 (2), 20232025.

C. C. T. Pringle , Y. Duguet & R. R. Kerswell 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. Lond. A 367, 457472.

C. C. T. Pringle & R. R. Kerswell 2007 Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99 (7), 074502.


A. Quarteroni , R. Sacco & F. Saleri 2007 Numerical Mathematics, 2nd edn.Springer.

D. Rand 1982 Dynamics and symmetry: predictions for modulated waves in rotating fluids. Arch. Rat. Mech. Anal. 79 (1), 137.

O. Reynolds 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935982.

J. Sanchez , F. Marques & J. M. Lopez 2002 A continuation and bifurcation technique for Navier–Stokes flows. J. Comput. Phys. 180 (1), 7898.


T. M. Schneider , B. Eckhardt & J. Vollmer 2007 aStatistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75 (6), 066313.

T. M. Schneider , B. Eckhardt & J. A. Yorke 2007 bTurbulence transition and edge of chaos in pipe flow. Phys. Rev. Lett. 99 (3), 034502.

J. D. Skufca , J. A. Yorke & B. Eckhardt 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96 (17), 174101.

S. Smale 1967 Differentiable dynamical systems. I. Diffeomorphisms. Bull. Am. Math. Soc. 73 (6), 747817.


F. Takens 1974 Singularities of vector fields. Publ. Math. IHES 43, 47100.


F. Waleffe 1995 Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process. Stud. Appl. Maths 95 (3), 319343.

F. Waleffe 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.

J. Wang , J. Gibson & F. Waleffe 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98 (20), 204501.


A. P. Willis & R. R. Kerswell 2008 Coherent structures in localized and global pipe turbulence. Phys. Rev. Lett. 100 (12).



O. Y. Zikanov 1996 On the instability of pipe Poiseuille flow. Phys. Fluids 8 (11), 29232932.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Mellibovsky et al. supplementary movie
Lower-branch travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: Axial velocity contours relative to the parabolic profile at the marked z-cross-section (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Current axial position indicated with a black line/ring.

 Video (3.7 MB)
3.7 MB
VIDEO
Movies

Mellibovsky et al. supplementary movie
Upper-branch travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: Axial velocity contours relative to the parabolic profile at the marked z-cross-section (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Current axial position indicated with a black line/ring.

 Video (3.8 MB)
3.8 MB
VIDEO
Movies

Mellibovsky et al. supplementary material
Modulated travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: axial phase-speed (cz) time-series and three-dimensional energy (ε3D) vs mean axial pressure gradient ((∇p)z) phase map. Middle right: Axial velocity contours relative to the parabolic profile at the z=0 and z=Λ/4 cross-sections (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Green/Blue dashed line and square refer to the upper/lower branch travelling wave (twub/twlb). The red dot following the solid line and loop represents the modulated wave (mtw). The phase map dashed loop is an unstable modulated wave at the same parameter values. Axial cross-sections shown are indicated with black lines/rings.

 Video (7.7 MB)
7.7 MB
VIDEO
Movies

Mellibovsky et al. supplementary movie
Unstable modulated travelling wave at Re=1600, κ=1.52. Left: Radial velocity contours at r=0.65 (contour spacing: Δur=0.008 U). Top right: axial phase-speed (cz) time-series and three-dimensional energy (ε3D) vs mean axial pressure gradient ((∇p)z) phase map. Middle right: Axial velocity contours relative to the parabolic profile at the z=0 and z=Λ/4 cross-sections (contour spacing: Δuz=0.12 U) with in-plane velocity vectors. Bottom right: Axial vorticity iso-surfaces at ωz= ±1.0 U/D. Blue for negative, red for positive. Green/Blue dashed line and square refer to the upper/lower branch travelling wave (twub/twlb). The red dot following the solid line and loop represents the modulated wave (mtw). The phase map dashed loop is the stable modulated wave coexisting at the same parameter values. Axial cross-sections shown are indicated with black lines/rings.

 Video (12.1 MB)
12.1 MB