Skip to main content
×
×
Home

Time-dependent Taylor–Aris dispersion of an initial point concentration

  • Søren Vedel (a1), Emil Hovad (a1) and Henrik Bruus (a2)
Abstract

Based on the method of moments, we derive a general theoretical expression for the time-dependent dispersion of an initial point concentration in steady and unsteady laminar flows through long straight channels of any constant cross-section. We retrieve and generalize previous case-specific theoretical results, and furthermore predict new phenomena. In particular, for the transient phase before the well-described steady Taylor–Aris limit is reached, we find anomalous diffusion with a dependence of the temporal scaling exponent on the initial release point, generalizing this finding in specific cases. During this transient we furthermore identify maxima in the values of the dispersion coefficient which exceed the Taylor–Aris value by amounts that depend on channel geometry, initial point release position, velocity profile and Péclet number. We show that these effects are caused by a difference in relaxation time of the first and second moments of the solute distribution and may be explained by advection-dominated dispersion powered by transverse diffusion in flows with local velocity gradients.

Copyright
Corresponding author
Present address: Niels Bohr International Academy and Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. Email address for correspondence: svedel@nbi.dk
References
Hide All
Ajdari, A., Bontoux, N. & Stone, H. A. 2006 Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. Anal. Chem. 78, 387392.
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.
Aris, R. 1960 On the dispersion of solute in pulsating flow through a tube. Proc. R. Soc. Lond. A 259 (1298), 370376.
Barton, N. G. 1983 On the method of moments for solute dispersion. J. Fluid Mech. 126, 205218.
Bontoux, N., Pépin, A., Chen, Y., Ajdari, A. & Stone, H. A. 2006 Experimental characterization of hydrodynamic dispersion in shallow microchannels. Lab Chip 6, 930935.
Bruus, H. 2008 Theoretical Microfluidics. Oxford University Press.
Camassa, R., Lin, Z. & McLaughlin, R. 2010 The exact evolution of scalar variance in pipe and channel flow. Commun. Math. Sci. 8 (2), 601626.
Codd, S. L., Manz, B., Seymour, J. D. & Callaghan, P. T. 1999 Taylor dispersion and molecular displacements in Poiseuille flow. Phys. Rev. E 60, R3491R3494.
Davit, Y., Byrne, H., Osborne, J., Pitt-Francis, J., Gavaghan, D. & Quintard, M. 2013 Hydrodynamic dispersion within porous biofilms. Phys. Rev. E 87, 012718.
Fallon, M. S., Howell, B. A. & Chauhan, A. 2009 Importance of Taylor dispersion in pharmacokinetic and multiple indicator dilution modeling. Math. Med. Biol. 26, 263296.
Foister, R. T. & van de Ven, T. G. M. 1980 Diffusion of Brownian particles in shear flows. J. Fluid Mech. 96, 105132.
Latini, M. & Bernoff, A. J. 2001 Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399411.
Leighton, D. T. 1989 Diffusion from an intial point distribution in an unbounded oscillating simple shear flow. Physico-Chem. Hydrodyn. 11, 377386.
Mehta, M. L. 2004 Random Matrices, 3rd edn. Pure and Applied Mathematics, vol. 142. Elsevier/Academic Press.
Mukherjee, A. & Mazumder, B. S. 1988 Dispersion of contaminant in oscillatory flows. Acta Mech. 74, 107.
Ostwald, W. 1929 On the arithmetical representation of viscosity structural fields. Kolloidn. Z. 47 (2), 176187.
Paul, S. & Mazumder, B. S. 2008 Dispersion in unsteady Couette–Poiseuille flows. Intl J. Engng Sci. 46, 12031217.
Rhines, P. B. & Young, W. R. 1983 How rapidly is a passive scalar mixed within closed streamlines?. J. Fluid Mech. 133, 133145.
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219 (1137), 186.
Vedel, S. & Bruus, H. 2012 Transient Taylor–Aris dispersion for time-dependent flows in straight channels. J. Fluid Mech. 691, 95122.
Vedel, S., Olesen, L. H. & Bruus, H. 2010 Pulsatile microfluidics as an analytical tool for determining the dynamic characteristics of microfluidic systems. J. Micromech. Microengng 20, 035026.
Watson, E. J. 1983 Diffusion in oscillatory pipe flow. J. Fluid Mech. 133, 233244.
Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553563.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed