Skip to main content
    • Aa
    • Aa

Drag reduction of circular cylinders by porous coating on the leeward side

  • Katharina Klausmann (a1) and Bodo Ruck (a1)

The present paper describes the effect of drag reduction of circular cylinders due to a porous coating on their leeward sides. To investigate the coating effect, experiments were conducted in a wind tunnel of Goettingen type. Systematic drag measurements were carried out for different cylinder configurations and flow velocities. The drag measurements were complemented by pressure and particle image velocimetry (PIV) flow field measurements around selected cylinders. The Reynolds numbers were varied in the subcritical range of $3\times 10^{4} . The results show that a thin porous layer on the leeward side, either incorporated in the cylinder shape or applied on the cylinder surface, leads to an increase of base pressure on the leeward side of the cylinder. It causes a reduction of drag and dampens oscillation amplitudes when compared to a cylinder without coating. Results obtained for different configurations with varying key parameters (coating angles, layer thicknesses and pore sizes of the porous material) clearly indicate the drag-reducing and amplitude-damping potential of leeward coating. The amount of drag reduction and amplitude damping depends on the combination of key parameters. It was demonstrated that the lowered drag coefficients $c_{d}$ were almost constant in the tested range of Reynolds numbers. A maximum reduction of drag of 13.2 % was measured. In addition, the results revealed a strong reduction of the pressure fluctuations around cylinders with a leeward coating due to the shift of the vortex region further downstream.

Corresponding author
Email address for correspondence:
Hide All
AchenbachE. 1971 Influence of surface roughness on the cross-flow around a circular cylinder. J. Fluid Mech. 46, 321335.
AckeretJ. 1926 Grenzschichtabsaugung. Zeitschrift des VDI 70 (35), 11531158.
AllenH. J. & VincentiW. G. 1944 Wall interference in a two-dimensional-flow wind tunnel, with consideration effect of compressibility. NACA 782, 155183.
BearmanP. W. & HarveyJ. K. 1993 Control of circular cylinder flow by the use of dimples. AIAA J. 31 (10), 17531756.
BeaversG. S. & JosephD. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (01), 197207.
BechertD. W. & HoppeG.1985 On the drag reduction of the shark skin. AIAA Shear Flow Control Conference, AIAA Paper 85-05.
BhattacharyyaS. & SinghA. K. 2011 Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder. Intl J. Numer. Methods Fluids 65, 683698.
BloorS. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19 (2), 290.
BreugemW. P., BoersmaB. J. & UittenbogaardR. E.2006 The influence of wall permeability on turbulent channel flow. 562, 35–72.
BruneauC.-H. & MortazaviI. 2006 Control of vortex shedding around a pipe section using a porous sheath. Intl J. Offshore Polar Engng 16 (2), 9096.
BruneauC.-H. & MortazaviI. 2008 Numerical modelling and passive flow control using porous media. Comput. Fluids 37 (5), 488498.
BruneauC.-H., MortazaviI. & GilliéronP. 2006 Flow regularisation and drag reduction around blunt bodies using porous devices. European Drag Reduction and Flow Control Meeting, ERCOFTAC.
CarberryJ., SheridanJ. & RockwellD. 2005 Controlled oscillations of a cylinder: forces and wake modes. J. Fluids Struct. 538 (1), 31.
CeccioS. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42 (1), 183203.
CetinerO. & RockwellD. 2001 Streamwise oscillations of a cylinder in steady current. Part 2. Free-surface effects on vortex formation and loading. J. Fluid Mech. 427, 2959.
ChoiH., JeonW.-P. & KimJ. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40 (1), 113139.
ChoiJ., JeonW. P. & ChoiH. 2006 Mechanism of drag reduction by dimples on a sphere. Phys. Fluids 18 (4), 15.
ChoiK.-S., JukesT. & WhalleyR. 2011 Turbulent boundary-layer control with plasma actuators. Phil. Trans. R. Soc. Lond. A 369 (1940), 14431458.
DaltonC. 1971 Allen and Vincenti Blockage corrections in a wind tunnel. AIAA J. 9 (9), 18641865.
FageA. & WarsapJ. H. 1929 The effects of turbulence and surface roughness on the drag of a circular cylinder. Aero. Res. Counc. R&M 1283, HMSO.
FranssonJ. H. M., KoniecznyP. & AlfredssonP. H. 2004 Flow around a porous cylinder subject to continuous suction or blowing. J. Fluids Struct. 19 (8), 10311048.
FrohnapfelB., JovanovićJ. & DelgadoA. 2007 Experimental investigations of turbulent drag reduction by surface-embedded grooves. J. Fluid Mech. 590, 107116.
GalbraithR. A. 1980 Flow pattern around a shrouded cylinder at Re = 5 × 103 . J. Wind Engng Ind. Aerodyn. 6, 227242.
GalbraithR. A. 1981 Aspects of the flow in the immediate vicinity of a porous shroud. J. Wind Engng Ind. Aerodyn. 8, 251258.
HahnS., JeJ. & ChoiH. 2002 Direct numerical simulation of turbulent channel flow with permeable walls. J. Fluid Mech. 450, 259285.
HoernerS. F. 1965 Fluid-Dynamic Drag. Selbstverlag.
HoytJ. W. 1972 The effect of additives on fluid friction. J. Basic Engng 94 (2), 258285.
JamesD. F. & TruongQ.-S. 1972 Wind load on cylinder with spanwise protrusion. J. Engng Mech. ASCE 98, 15731589.
von KármánT. 1911 Über den Mechanismus des Widerstandes den ein bewegter Körper in einer Flüssigkeit erfährt. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911, 509517.
KongF. Y. & SchetzJ. A. 1982 Turbulent boundary layer over porous surfaces with different surface geometries. AIAA Paper 82-0030.
KuznetsovA. V. & BeckerS. M. 2004 Effect of the interface roughness on turbulent convectice heat transfer in a composite porous/fluid duct. Intl Commun. Heat Mass Transfer 31 (1), 1120.
de LemosM. J. S. 2005 Turbulent kinetic energy distribution across the interface between a porous medium and a clear region. Intl Commun. Heat Mass Transfer 32 (1–2), 107115.
de LemosM. J. S. & SilvaR. A. 2006 Turbulent flow over a layer of a highly permeable medium simulated with a diffusion-jump model for the interface. Intl J. Heat Mass Transfer 49, 546556.
LinJ., TowfighiJ. & RockwellD. 1995 Near-wake of a circular cylinder: control by steady and unsteady surface injection. J. Fluids Struct. 9, 659669.
LumleyL. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367387.
MaskellE. C. 1963 A theory of blockage effects on bulff bodies and stalled wings in a closed wind tunnel. Aero. Res. Counc. R&M 3400, HMSO.
MerkleC. L. & DeutschS. 1992 Microbubble drag reduction in liquid turbulent boundary layers. Appl. Mech. Rev. 45 (3), 103127.
MoessnerM. & RadespielR. 2015 Modelling of turbulent flow over porous media using a volume averaging approach and a Reynolds stress model. Comput. Fluids 108, 2542.
MoreauE. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D 40 (3), 605636.
PerlinM. & CeccioS. 2015 Mitigation of Hydrodynamics Resistance, 1st edn. World Scientific.
PriceP. 1956 Suppression of the fluid-induced vibration of circular cylinders. J. Engng Mech. ASCE 82 (3), 122.
RoshkoA.1954 On the drag and shedding frequency of two-dimensional bluff bodies NACA TN 3169.
RoshkoR. 1955 On the wake and drag of bluff bodies. J. Aero. Sci. 22 (2), 124132.
RoshkoR. 1961 Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10, 345356.
SchlichtingH. 1948 Ein Näherungsverfahren zur Berechnung der laminaren Reibungsschicht mit Absaugung*. Ingenieur-Archiv 16 (3), 201220.
ShihW. C. L., WangC., ColesD. & RoshkoA. 1993 Experiments on flow past rough circular cylinders at large Reynolds numbers. J. Wind Engng Ind. Aerodyn. 49 (1–3), 351368.
StansbyP. K. 1974 The effects of end plates on the base pressure coefficient of a circular cylinder. Aeronaut. J. 78, 3637.
StrouhalV. 1878 Über eine besondere Art der Tonerregung. Ann. Phys. Chem. 5 (10), 216251.
SzepessyS. 1993 On the control of circular cylinder flow by end plates. Eur. J. Mech. (B/Fluids) 12 (2), 217243.
VafaiK. & ThiyagarajaR. 1987 Analysis of flow and heat transfer at the interface region of a porous medium. Intl J. Heat Mass Transfer 30 (7), 13911405.
WestG. S. & ApeltC. J. 1993 Measurements of fluctuating pressures and forces on a circular cylinder in the Reynolds number range 104 to 2, 5 × 105 . J. Fluids Struct. 7, 227244.
WesterweelJ. & ScaranoF. 2005 Universal outlier detection for PIV data. Exp. Fluids 39, 10961100.
WieselsbergerC. 1913 Der Luftwiderstand von Kugeln. Z. Lufttechnik Motorluftschiffahrt 5, 140144.
WieselsbergerC. 1921 Neuere Feststellungen über die Gesetze des Flüssigkeits- und Luftwiderstandes. Physik. Z. 114, 321328.
WongH. Y. 1979 A means of controling bluff body flow separation. J. Ind. Aerodyn. 4, 183201.
ZagniA. F. E. & SmithK. V. H. 1976 Channel flow over permeable beds of graded spheres. J. Hydraul. Div. ASCE 102, 207222.
ZdravkovichM. M. 1997 Flow Around Circular Cylinders. Vol 1: Fundamentals. Oxford University Press.
ZdravkovichM. M. 2003 Flow Around Circular Cylinders. Vol 2: Applications. Oxford University Press.
ZippeH. J. & GrafW. H. 1983 Turbulent boundary-layer flow over permeable and non-permeable rough surfaces. J. Hydraul. Res. 21 (1), 5165.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 17
Total number of PDF views: 246 *
Loading metrics...

Abstract views

Total abstract views: 370 *
Loading metrics...

* Views captured on Cambridge Core between 19th January 2017 - 20th October 2017. This data will be updated every 24 hours.