Skip to main content

Droplet deformation by short laser-induced pressure pulses

  • Sten A. Reijers (a1), Jacco H. Snoeijer (a1) (a2) and Hanneke Gelderblom (a1)

When a free-falling liquid droplet is hit by a laser it experiences a strong ablation-driven pressure pulse. Here we study the resulting droplet deformation in the regime where the ablation pressure duration is short, i.e. comparable to the time scale on which pressure waves travel through the droplet. To this end, an acoustic analytic model for the pressure, pressure impulse and velocity fields inside the droplet is developed in the limit of small density fluctuations. This model is used to examine how the droplet deformation depends on the pressure pulse duration while the total momentum to the droplet is kept constant. Within the limits of this analytic model, we demonstrate that when the total momentum transferred to the droplet is small the droplet shape evolution is indistinguishable from an incompressible droplet deformation. However, when the momentum transfer is increased the droplet response is strongly affected by the pulse duration. In this later regime, compressed flow regimes alter the droplet shape evolution considerably.

Corresponding author
Email address for correspondence:
Hide All
Antkowiak A., Bremond N., le Dizes S. & Villermaux E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.
Apitz I. & Vogel A. 2005 Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A 81, 329338.
Avila S. R. G. & Ohl C.-D. 2016 Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 805, 551576.
Banine V. Y., Koshelev K. N. & Swinkels G. H. P. M. 2011 Physical processes in EUV sources for microlithography. J. Phys. D 44, 253001.
Batchelor G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Blackstock D. T. 2000 Fundamentals of Physical Acoustics. Wiley.
Chichkov B. N., Momma C., Nolte S., von Alvensleben F. & Tunnermann A. 1996 Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109115.
Clanet C., Beguin C., Richard D. & Quere D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.
Cooker M. J. & Peregrine D. H. 1995 Pressure-impulse theory for liquid impact problems. J. Fluid Mech. 297, 193214.
Fujioka S., Shimomura M., Shimada Y., Maeda S., Sakaguchi H., Nakai Y., Aota T., Nishimura H., Ozaki N., Sunahara A. et al. 2008 Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production. Appl. Phys. Lett. 92, 241502.
Geints Y. E., Kabanov A. M., Matvienko G. G., Oshlakov V. K., Zemlyanov A. A., Golik S. S. & Bukin O. A. 2010 Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation. Opt. Lett. 35, 27172726.
Gelderblom H., Lhuissier H., Klein A. L., Bouwhuis W., Lohse D., Villermaux E. & Snoeijer J. H. 2016 Drop deformation by laser-pulse impact. J. Fluid Mech. 794, 676699.
Josserand C. & Thoroddsen S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.
Klein A. L., Bouwhuis W., Visser C. W., Lhuissier H., Sun S., Snoeijer J. H., Villermaux E., Lohse D. & Gelderblom H. 2015 Drop shaping by laser-pulse impact. Phys. Rev. Appl. 3, 044018.
Kurilovich D., Klein A. L., Torretti F., Lassise A., Hoekstra R., Ubachs W., Gelderblom H. & Versolato O. O. 2016 Plasma propulsion of a metallic microdroplet and its deformation upon laser impact. Phys. Rev. Appl. 6, 014018.
Lauterborn W. & Vogel A. 2013 Shock Wave Emission by Laser Generated Bubbles, pp. 67103. Springer.
Lindinger A., Hagen J., Socaciu L. D., Bernhardt T. M., Woste L. & Leisner T. 2004 Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses. Appl. Opt. 43, 52635272.
Morse P. M. & Feshbach H. 1953 Methods of Theoretical Physics. McGraw-Hill.
Philippi J., Lagree P. Y. & Antkowiak A. 2016 Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795, 96135.
Reijers S. A., Gelderblom H. & Toschi F. 2016 Axisymmetric multiphase lattice Boltzmann method for generic equations of state. J. Comput. Sci. 17, 309314.
Richard D., Clanet C. & Quere D. 2002 Surface phenomena: contact time of a bouncing drop. Nature 417, 881.
Shan X., Yuan X. & Chen H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413441.
Sigrist M. W. 1986 Laser generation of acoustic waves in liquids and gases. J. Appl. Phys. 60, R83R121.
Sigrist M. W. & Kneubuhl F. K. 1978 Laser-generated stress waves in liquids. J. Acoust. Soc. Am. 64, 16521663.
Succi S. 2001 The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press.
Sun C., Can E., Dijkink R. & Lohse D. 2009 Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. J. Fluid Mech. 632, 516.
Tagawa Y., Oudalov N., Visser C. W., Peters I. R., van der Meer D., Sun C., Prosperetti A. & Lohse D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2, 031002.
Thoroddsen S. T., Takehara K., Etoh T. G. & Ohl C.-D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.
Vogel A. & Parilitz S. B. 1996 Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100, 148165.
Wang X. & Xu X. 2001 Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 73, 107114.
Wildeman S., Visser C. W., Sun C. & Lohse D. 2016 On the spreading of impacting drops. J. Fluid Mech. 805, 636655.
Wolfram Research Inc.2017 Mathematica 11.1.
Yarin A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159251.
Zhang J.-Z., Lam J. K., Wood C. F., Chu B.-T. & Chang R. K. 1987 Explosive vaporization of a large transparent droplet irradiated. Appl. Opt. 26, 47314737.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 12
Total number of PDF views: 98 *
Loading metrics...

Abstract views

Total abstract views: 154 *
Loading metrics...

* Views captured on Cambridge Core between 4th September 2017 - 24th November 2017. This data will be updated every 24 hours.