Skip to main content Accessibility help
×
×
Home

The effects of flow stratification by non-cohesive sediment on transport in high-energy wave-driven flows

  • DANIEL C. CONLEY (a1), SILVIA FALCHETTI (a2) (a3), IRIS P. LOHMANN (a4) and MAURIZIO BROCCHINI (a5)
Abstract

The two-way effects of the time-varying suppression of turbulence by gradients in suspended sediment concentration have been investigated using a modified form of the Generalized Ocean Turbulence Model (GOTM). Field measurements of fluid velocities and sediment concentrations collected under high-energy conditions (mobility number ≈ 900) have been simulated both including and neglecting the feedback between sediment and turbulence. The results show that, when present, this feedback increases the wave-coherent component of transport relative to the mean component of transport, which can even change the direction of transport. Comparisons between measured and simulated time series of near-bed sediment concentrations show great coherence (0.95 correlation) and it is argued that the differences in net transport rates may be partially explained by the use of a uniform grain size in the simulations. It is seen that the effects of sediment stratification scale with orbital velocity divided by sediment setting velocity, um/ws, for all grain sizes.

Copyright
References
Hide All
Beach, R. A., Sternberg, R. W. & Jonsson, R. 1992 A fiber optic sensor for monitoring suspended sediment. Mar. Geol. 103, 513520.
Blackford, J. C., Allen, J. I. & Gilbert, F. J. 2004 Ecosystem dynamics at six contrasting sites: a generic modelling study. J. Mar. Systems 52 (1–4), 191215.
Burchard, H. 1999 Recalculation of surface slopes as forcing for numerical water column models of tidal flow. Appl. Math. Modelling 4, 737755.
Burchard, H. & Bolding, K. 2001 Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer. J. Phys. Oceanogr. 31, 19431968.
Burchard, H., Bolding, K. & Villareal, M. R. 1999 GOTM, a general ocean turbulence model. Theory, implementation and test cases. Tech Rep EUR 18745-EN, European Commission, JRC Ispra, pp. 1–103.
Burchard, H., Petersen, O. & Rippeth, T. P. 1998 Comparing the performance of the Mellor-Yamada and the k-epsilon two-equation turbulence models. J. Geophys. Res. 103 (C5), 1054310554.
Byun, D.-S. & Wang, X. H. 2005 The effect of sediment stratification on tidal dynamics and sediment transport patterns. J. Geophys. Res. 110, C03011.
Calantoni, J. & Puleo, J. A. 2006 Role of pressure gradients in sheet flow of coarse sediments under sawtooth waves. J. Geophys. Res. 111, C01010.
Canuto, V. M., Howard, A., Cheng, Y. & Dubovikov, M. S. 2001 Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31 (6), 14131426.
Cellino, M. & Graf, W. H. 2007 Sediment-laden flow in open-channels under noncapacity and capacity conditions. J. Hydraul. Engng 125 (5), 455462.
Chang, Y. S. & Scotti, A. 2006 Turbulent convection of suspended sediments due to flow reversal. J. Geophys. Res. 111, C07001.
Coleman, N. L. 1981 Velocity profiles with suspended sediment. J. Hydraul. Res. 19, 211229.
Conley, D. C. & Beach, R. A. 2003 Cross-shore sediment transport partitioning in the nearshore during a storm event. J. Geophys. Res. 108 (C3), 10. doi:1029/2001JC001230
Conley, D. C. & Inman, D. L. 1994 Ventilated oscillatory boundary layers. J. Fluid Mech. 273, 262284.
Davies, A. G., Ribberink, J. S., Temperville, A. & Zyserman, J. A. 1997 Comparisons between sediment transport models and observations made in wave and current flows above plane beds. Coast. Engng 31 (1–4), 163198.
Dohmen-Janssen, C. M., Hassan, W. N. & Ribberink, J. S. 2001 Mobile-bed effects in oscillatory sheet flow. J. Geophys. Res. 106 (C11), 2710327115.
Eifler, W. & Schrimpf, W. 1992 ISPRAMIX, a hydrodynamic program for computing regional sea circulation patterns and transfer processes. Tech. Rep. EUR 14856, European Commission Joint Research Center, Ispra, Italy.
Einstein, H. A. & Chien, N. 1955 Effects of heavy sediment concentration near the bed on velocity and sediment distribution. University, of California, Institute of Engineering Research, Berkeley, California, pp. 198.
Elgar, S., Gallagher, E. L. & Guza, R. T. 2001 Nearshore sandbar migration. J. Geophys. Res. 106 (C6), 1162311627.
Foster, D. L., Beach, R. A. & Holman, R. A. 2006 Turbulence observations of the nearshore wave bottom boundary layer. J. Geophys. Res. 111, C04011.
Gallagher, E. L., Elgar, S. & Guza, R. T. 1998 Observations of sand bar evolution on a natural beach. J. Geophys. Res. 103 (C2), 32033215.
Gelfenbaum, G. & Smith, J. D. 1986 Experimental evaluation of a generalized suspended-sediment transport theory. In Shelf Sands and Sandstones (ed. Knight, R. J. & McLean, J. R.). Canadian Society of Petroleum Geologists, Calgary, Alberta, Canada, pp. 133144.
Hanes, D. M. 1991 Suspension of sand due to wave groups. J. Geophys. Res. 96 (C5), 89118915.
Henderson, S. M., Allen, J. S. & Newberger, P. A. 2004 Nearshore sandbar migration predicted by an eddy-difusive boundary layer model. J. Geophys. Res. 109, C06024.
Hermann, M. J. & Madsen, O. S. 2007 Effect of stratification due to suspended sand on velocity and concentration distribution in unidirectional flows. J. Geophys. Res. 112, C02006.
Hoefel, F. & Elgar, S. 2003 Wave-induced sediment transport and sandbar migration. Science 299, 18851887.
Holmedal, L. E., Myrhaug, D. & Eidsvik, K. J. 2004 Sediment suspension under sheet flow conditions beneath random waves plus current. Cont. Shelf Res. 24 (17), 20652091.
Lamb, M. P., D'Asaro, E. & Parsons, J. D. 2004 Turbulent structure of high-density suspensions formed under waves. J. Geophys. Res. 109, C12026.
Lau, Y. L. & Chu, V. H. 1987 Suspended sediment effect on turbulent diffusion. 22nd IAHR Congress, Lausanne, Switzerland.
Lohmann, I. P., Fredsoe, J., Sumer, B. M. & Christensen, E. D. 2006 Large eddy simulation of the ventilated wave boundary layer. J. Geophys. Res. 111, C06036.
Lyn, D. A. 1992 Turbulence characteristics of sediment-laden flows in open channels. J. Hydraul. Engng 118 (7), 971988.
McLean, S. R. 2005 On the calculation of suspended load for noncohesive sediments. J. Geophys. Res. 97 (C4), 57595770.
Munk, W. H. & Anderson, E. R. 1948 Notes on the theory of the thermocline. J. Mar. Res. 3, 276295.
Nielsen, P. 1979 Some Basic Concepts of Wave Sediment Transport. Series Paper no. 20, Institute Hydrodynamics & Hydraulic Engineering, Technical University Denmark, Lyngby, pp. 1166.
Nielsen, P. 1992, Coastal Bottom Boundary Layers and Sediment Transport. World Scientific.
Nielsen, P. 2006 Sheet flow sediment transport under waves with acceleration skewness and boundary layer streaming. Coast. Engng 53 (9), 749758.
Nielsen, P. & Teakle, I. A. L. 2004 Turbulent diffusion of momentum and suspended particles: A finite-mixing-length theory. Phys. Fluids 16 (7), 23422348.
Plant, N. G., Holland, K. T., Puleo, J. A. & Gallagher, E. L. 2004 Prediction skill of nearshore profile evolution models. J. Geophys. Res. 109, C01006.
Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5, 136139.
Ralston, D. K. & Stacey, M. T. 2006 Shear and turbulence production across subtidal channels. J. Mar. Res. 64 (1), 147171.
Ribberink, J. S. & Al-Salem, A. A. 1995 Sheet flow and suspension of sand in oscillatory boundary layers. Coast. Engng 25, 205225.
Rodi, W. 1987 Examples of calculation methods for flow and mixing in stratified flows. J. Geophys. Res. 92, 53055328.
Schumann, U. & Gerz, T. 1995 Turbulent mixing in stably stratified shear flows. J. Appl. Met. 34, 3348.
Smith, J. D. & McLean, S. R. 1977 Spatially averaged flow over a wavy surface. J. Geophys. Res. 82 (12), 17351746.
Stips, A., Burchard, H., Bolding, K. & Eifler, W. 2002 Modelling of convective turbulence with a two-equation k-e turbulence closure scheme. Ocean Dyn. 52 (4), doi. 10.1007/s10236-002-0019-2, 153168.
Taylor, P. A. & Dyer, K. R. 1977 Theoretical models of flow near the bed and their implications for sediment transport. In Marine Modeling. The Sea (ed. Goldberg, E. D.), pp. 579601. Wiley.
Thompson, C. E. L., Amos, C. L., Angelaki, M., Jones, T. E. R. & Binks, C. E. 2006 An evaluation of bed shear stress under turbid flows. J. Geophys. Res. 111, C04008.
Thornton, E. B., Humiston, R. T. & Birkemeier, W. 1996 Bar/trough generation on a natural beach. J. Geophys. Res. 101 (C5), 1209712110.
Trowbridge, J. & Young, D. 1989 Sand transport by unbroken water waves under sheet flow conditions. J. Geophys. Res. 94 (C8), 1097110991.
Umlauf, L., Burchard, H. & Bolding, K. 2006 GOTM Sourcecode and test case documentation. Version 3.2, http://www.gotm.net, pp. 1–231.
Vanoni, V. A. 1946 Transportation of suspended sediment by water. Trans. Am. Soc. Civ. Engng 111, 67133.
Winterwerp, J. C. 2001 Stratification effects by cohesive and noncohesive sediment. J. Geophys. Res. 106 (C10), 2255922574.
Winterwerp, J. C. 2006 Stratification effects by fine suspended sediment at low, medium, and very high concentrations. J. Geophys. Res. 111, C05012.
Zanke, U. 1977 Berechnung der Sinkgeschwindigkeiten von Sedimenten. Mittleilungen des Franzius-Institutes 46, 231245.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed