Skip to main content
    • Aa
    • Aa

Experiments on laminar film flow along a periodic wall


Experimental results are reported on the structure of gravity-driven film flow along an inclined periodic wall with rectangular corrugations. A fluorescence imaging method is used to capture the evolution of film height in space and time with accuracy of a few microns. The steady flow is found to exhibit a statically deformed free surface, as predicted by previous asymptotic and numerical studies. Though usually unstable, its characteristics determine much of the subsequent non-stationary dynamics. Travelling disturbances are observed to evolve into solitary multi-peaked humps, and pronounced differences from the respective phenomena along a flat wall are noted. Finally, a remarkable stabilization of the flow at high Reynolds numbers is documented, which proceeds through the development of a three-dimensional flow structure and leads to a temporary decrease in film thickness and recession of solitary waves.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 118 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.