Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Kiliyanpilakkil, V. P. and Basu, S. 2015. Extended self-similarity of atmospheric boundary layer wind fields in mesoscale regime: Is it real?. EPL (Europhysics Letters), Vol. 112, Issue. 6, p. 64003.

    Shukla, Vishwanath Brachet, Marc and Pandit, Rahul 2013. Turbulence in the two-dimensional Fourier-truncated Gross–Pitaevskii equation. New Journal of Physics, Vol. 15, Issue. 11, p. 113025.

    Budaev, V. P. Zelenyi, L. M. and Savin, S. P. 2015. Generalized self-similarity of intermittent plasma turbulence in space and laboratory plasmas. Journal of Plasma Physics, Vol. 81, Issue. 06,

    Guadagnini, Alberto and Neuman, Shlomo P. 2011. Extended power-law scaling of self-affine signals exhibiting apparent multifractality. Geophysical Research Letters, Vol. 38, Issue. 13, p. n/a.

    Sahoo, Ganapati Perlekar, Prasad and Pandit, Rahul 2011. Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence. New Journal of Physics, Vol. 13, Issue. 1, p. 013036.

    Zybin, K. P. and Sirota, V. A. 2012. Vortex filament model and multifractal conjecture. Physical Review E, Vol. 85, Issue. 5,

    Banerjee, Debarghya and Pandit, Rahul 2014. Statistics of the inverse-cascade regime in two-dimensional magnetohydrodynamic turbulence. Physical Review E, Vol. 90, Issue. 1,

    Ray, Samriddhi Sankar and Basu, Abhik 2011. Universality of scaling and multiscaling in turbulent symmetric binary fluids. Physical Review E, Vol. 84, Issue. 3,

    Guadagnini, A. Blunt, M. J. Riva, M. and Bijeljic, B. 2014. Statistical Scaling of Geometric Characteristics in Millimeter Scale Natural Porous Media. Transport in Porous Media, Vol. 101, Issue. 3, p. 465.

    Chakraborty, Sagar Frisch, Uriel Pauls, Walter and Ray, Samriddhi Sankar 2012. Nelkin scaling for the Burgers equation and the role of high-precision calculations. Physical Review E, Vol. 85, Issue. 1,

    Hyman, Jeffrey D. Guadagnini, Alberto and Winter, C. Larrabee 2015. Statistical scaling of geometric characteristics in stochastically generated pore microstructures. Computational Geosciences, Vol. 19, Issue. 4, p. 845.

    Banerjee, Debarghya Ray, Samriddhi Sankar Sahoo, Ganapati and Pandit, Rahul 2013. Multiscaling in Hall-Magnetohydrodynamic Turbulence: Insights from a Shell Model. Physical Review Letters, Vol. 111, Issue. 17,

    Siena, M. Guadagnini, A. Riva, M. Bijeljic, B. Pereira Nunes, J. P. and Blunt, M. J. 2014. Statistical scaling of pore-scale Lagrangian velocities in natural porous media. Physical Review E, Vol. 90, Issue. 2,

    Lanotte, Alessandra S. Malapaka, Shiva Kumar and Biferale, Luca 2016. On the vortex dynamics in fractal Fourier turbulence. The European Physical Journal E, Vol. 39, Issue. 4,

  • Journal of Fluid Mechanics, Volume 649
  • April 2010, pp. 275-285

Extended self-similarity works for the Burgers equation and why

  • DOI:
  • Published online: 13 April 2010

Extended self-similarity (ESS), a procedure that remarkably extends the range of scaling for structure functions in Navier–Stokes turbulence and thus allows improved determination of intermittency exponents, has never been fully explained. We show that ESS applies to Burgers turbulence at high Reynolds numbers and we give the theoretical explanation of the numerically observed improved scaling at both the IR and UV end, in total a gain of about three quarters of a decade: there is a reduction of subdominant contributions to scaling when going from the standard structure function representation to the ESS representation. We conjecture that a similar situation holds for three-dimensional incompressible turbulence and suggest ways of capturing subdominant contributions to scaling.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

I. Arad , B. Dhruva , S. Kurien V. S. L'vov , I. Procaccia & K. R. Sreenivasan 1998 Extraction of anisotropic contributions in turbulent flows. Phys. Rev. Lett. 81, 53305333.

C. Bardos , U. Frisch , W. Pauls , S. S. Ray & E. S. Titi 2010 Entire solutions of hydrodynamical equations with exponential dissipation. Commun. Math. Phys. 293, 519543.

R. Benzi , S. Ciliberto , C. Baudet & G. R. Chavarria 1995 On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D 80, 385398.

R. Benzi , S. Ciliberto , R. Tripiccione , C. Baudet , F. Massaioli & S. Succi 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29R32.

J. K. Bhattacharjee & A. Sain 1999 Homogeneous isotropic turbulence: large momentum expansion. Physica A 270, 165172.

L. Biferale & I. Procaccia 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43164.

S. M. Cox & P. C. Matthews 2002 Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430455.

G. Falkovich , K. Gawedzki & M. Vergassola 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913975.

U. Frisch 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.

U. Frisch & M. Vergassola 1991 A prediction of the multifractal model: the intermediate dissipation range. Europhys. Lett. 14, 439444.

H. Fujisaka & S. Grossman 2001 Scaling hypothesis leading to extended self-similarity in turbulence. Phys. Rev. E 63, 026305.

J. van der Hoeven 2009 On asymptotic extrapolation. J. Symb. Comput. 44, 10001016.

E. Hopf 1950 The partial differential equation (ut+uux = uxx. Commun. Pure Appl. Math. 3, 201230.

A. K. Kassam & L. N. Trefethen 2005 Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 12141233.

R. Kraichnan 1968 Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945953.

R. Kraichnan 1994 Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72, 10161019.

C. Meneveau 1996 Transition between viscous and inertial-range scaling of turbulence structure functions. Phys. Rev. E 54, 36573663.

D. Mitra , J. Bec , R. Pandit & U. Frisch 2005 Is multiscaling an artifact in the stochastically forced Burgers equation? Phys. Rev. Lett. 94, 194501.

G. Paladin & A. Vulpiani 1987 Anomalous scaling and generalized Lyapunov exponents of the one-dimensional Anderson model. Phys. Rev. B 35, 20152020.

W. Pauls & U. Frisch 2007 A Borel transform method for locating singularities of Taylor and Fourier series. J. Stat. Phys. 127, 10951119.

A. Sain & J. K. Bhattacharjee 1999 Extended self-similarity and dissipation range dynamics of three-dimensional turbulence. Phys. Rev. E 60, 571577.

J. Schumacher , K. R. Sreenivasan & V. Yakhot 2007 Asymptotic exponents from low-Reynolds-number flows. New J. Phys. 9, 89.

D. Segel , V. L'vov & I. Procaccia 1996 Extended self-similarity in turbulent systems: an analytically soluble example. Phys. Rev. Lett. 76, 18281831.

S. I. Vainshtein & K. R. Sreenivasan 1994 Kolmogorov's (4/5)th law and intermittency in turbulence. Phys. Rev. Lett. 73, 30853088.

V. Yakhot 2001 Mean-field approximation and extended self-similarity in turbulence. Phys. Rev. Lett. 87, 234501.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *