Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Gleirscher, Engelbert and Fischer, Jan-Thomas 2014. Retarding avalanches in motion with net structures. Cold Regions Science and Technology, Vol. 97, p. 159.

    Meyer, John K. and Merlino, Robert L. 2013. Transient bow shock around a cylinder in a supersonic dusty plasma. Physics of Plasmas, Vol. 20, Issue. 7, p. 074501.

    Faug, Thierry 2015. Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines. Physical Review E, Vol. 92, Issue. 6,

    Gray, John Mark Nicholas Timm Gajjar, Parmesh and Kokelaar, Peter 2015. Particle-size segregation in dense granular avalanches. Comptes Rendus Physique, Vol. 16, Issue. 1, p. 73.

    Jiang, Li-jie Shao, Wei-yun Zhu, David Z. and Sun, Zhi-lin 2014. Forces on surface-piercing vertical circular cylinder groups on flooding staircase. Journal of Fluids and Structures, Vol. 46, p. 17.

    Razis, D. Edwards, A. N. Gray, J. M. N. T. and van der Weele, Ko 2014. Arrested coarsening of granular roll waves. Physics of Fluids, Vol. 26, Issue. 12, p. 123305.

    Ancey, Christophe and Bain, Vincent 2015. Dynamics of glide avalanches and snow gliding. Reviews of Geophysics, Vol. 53, Issue. 3, p. 745.

    Mead, Stuart R. and Cleary, Paul W. 2015. Validation of DEM prediction for granular avalanches on irregular terrain. Journal of Geophysical Research: Earth Surface, Vol. 120, Issue. 9, p. 1724.

    JING, He-fang LI, Yi-tian and LI, Chun-guang 2016. Numerical study of the flow in the Yellow River with non-monotonous banks. Journal of Hydrodynamics, Ser. B, Vol. 28, Issue. 1, p. 142.

    Bremm, Gian Goseberg, Nils Schlurmann, Torsten and Nistor, Ioan 2015. Long Wave Flow Interaction with a Single Square Structure on a Sloping Beach. Journal of Marine Science and Engineering, Vol. 3, Issue. 3, p. 821.

    Caviedes-Voullième, Daniel Juez, Carmelo Murillo, Javier and García-Navarro, Pilar 2014. 2D dry granular free-surface flow over complex topography with obstacles. Part I: experimental study using a consumer-grade RGB-D sensor. Computers & Geosciences, Vol. 73, p. 177.

    Domnik, Birte Pudasaini, Shiva P. Katzenbach, Rolf and Miller, Stephen A. 2013. Coupling of full two-dimensional and depth-averaged models for granular flows. Journal of Non-Newtonian Fluid Mechanics, Vol. 201, p. 56.

    Juez, C. Caviedes-Voullième, D. Murillo, J. and García-Navarro, P. 2014. 2D dry granular free-surface transient flow over complex topography with obstacles. Part II: Numerical predictions of fluid structures and benchmarking. Computers & Geosciences, Vol. 73, p. 142.

    Choi, C.E. Ng, C.W.W. Song, D. Kwan, J.H.S. Shiu, H.Y.K. Ho, K.K.S. and Koo, R.C.H. 2014. Flume investigation of landslide debris–resisting baffles. Canadian Geotechnical Journal, Vol. 51, Issue. 5, p. 540.

  • Journal of Fluid Mechanics, Volume 720
  • April 2013, pp. 314-337

Gravity-driven granular free-surface flow around a circular cylinder

  • X. Cui (a1) and J. M. N. T. Gray (a2)
  • DOI:
  • Published online: 27 February 2013

Snow avalanches and other hazardous geophysical granular flows, such as debris flows, lahars and pyroclastic flows, often impact on obstacles as they flow down a slope, generating rapid changes in the flow height and velocity in their vicinity. It is important to understand how a granular material flows around such obstacles to improve the design of deflecting and catching dams, and to correctly interpret field observations. In this paper small-scale experiments and numerical simulations are used to investigate the supercritical gravity-driven free-surface flow of a granular avalanche around a circular cylinder. Our experiments show that a very sharp bow shock wave and a stagnation point are generated in front of the cylinder. The shock standoff distance is accurately reproduced by shock-capturing numerical simulations and is approximately equal to the reciprocal of the Froude number, consistent with previous approximate results for shallow-water flows. As the grains move around the cylinder the flow expands and the pressure gradients rapidly accelerate the particles up to supercritical speeds again. The internal pressure is not strong enough to immediately push the grains into the space behind the cylinder and instead a grain-free region, or granular vacuum, forms on the lee side. For moderate upstream Froude numbers and slope inclinations, the granular vacuum closes up rapidly to form a triangular region, but on steeper slopes both experiments and numerical simulations show that the pinch-off distance moves far downstream.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

B. Akers & O. Bokhove 2008 Hydraulic flow through a channel contraction: multiple steady states. Phys. Fluids 20, 056601.

D. Baroudi , B. Sovilla & E. Thibert 2011 Effects of flow regime and sensor geometry on snow avalanche impact-pressure measurements. J. Glaciol. 57, 277288.

N. Belouaggadia , H. Olivier & R. Brun 2008 Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows. J. Fluid Mech. 607, 167197.

T. Börzsönyi , T. C. Halsey & E. Ecke 2008 Avalanche dynamics on a rough inclined bed. Phys. Rev. E 78, 011306.

J. F. Boudet & H. Kellay 2010 Drag coefficient for a circular obstacle in a quasi-two-dimensional dilute supersonic granular flow. Phys. Rev. Lett. 105, 104501.

M. J. Branney & B. P. Kokelaar 1992 A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull. Volcanol. 54, 504520.

C. E. Brennen , K. Sieck & J. Paslaski 1983 Hydraulic jumps in granular material flow. Powder Technol. 35, 3137.

V. Buchholtz & T. Pöschel 1998 Interaction of a granular stream with an obstacle. Granul. Matt. 1, 3341.

P. D. Cole , E. S. Calder , T. H. Druitt , R. Hoblitt , R. Robertson , R. S. J. Sparks & S. R. Young 1998 Pyroclastic flows generated by gravitational instability of the 1996–97 lava dome of Soufriere Hills Volcano, Montserrat. Geophys. Res. Lett. 25.

X. Cui , J. M. N. T. Gray & T. Johannesson 2007 Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res. 112, F04012.

T. Faug , P. Gauer , K. Lied & M. Naaim 2008 Overrun length of avalanches overtopping catching dams: cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J. Geophys. Res. 113, F03009.

L. K. Forbes & L. W. Schwartz 1981 Supercritical flow past blunt bodies in shallow water. Z. Angew. Math. Phys. 32, 314328.

J. M. N. T. Gray 2001 Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 129.

J. M. N. T. Gray & K. Hutter 1997 Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9, 341345.

J. M. N. T. Gray , M. Wieland & K. Hutter 1999 Free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. A 455, 18411874.

K. M. Hákonardóttir & A. J. Hogg 2005 Oblique shocks in rapid granular flows. Phys. Fluids 17, 0077101.

K. M. Hákonardóttir , A. J. Hogg , J. Batey & A. W. Woods 2003 Flying avalanches. Geophys. Res. Lett. 30, 2191.

S. Hauksson , M. Pagliardi , M. Barbolini & T. Jóhannesson 2007 Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg. Sci. Technol. 49, 5463.

P. Heil , E. C. Rericha , D. I. Goldman & H. L. Swinney 2004 Mach cone in a shallow granular fluid. Phys. Rev. E 70, 060301.

K. Hida 1953 An approximate study of the detached shock wave in front of a circular cylinder and a sphere. J. Phys. Soc. Japan 8, 740745.

K. Hu , F. Wei & Y. Li 2011 Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surf. Process. Landf. 36, 12681278.

O. Hungr & N. R. Morgenstern 1984a Experiments on the flow behaviour of granular materials at high velocity in an open channel flow. Geotechnique 34, 405413.

O. Hungr & N. R. Morgenstern 1984b High velocity ring shear tests on sand. Geotechnique 34, 415421.

R. M. Iverson 1997 The physics of debris-flows. Rev. Geophys. 35, 245296.

R. M. Iverson & R. P. Denlinger 2001 Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J. Geophys. Res. 106 (B1), 553566.

G. S. Jiang , D. Levy , C. T. Lin , S. Osher & E. Tadmor 1998 High-resolution nonoscillatory central schemes with non-staggerred grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35 (6), 21472168.

T. Jóhannesson 2001 Run-up of two avalanches on the deflecting dams at Flateyri, northwest Iceland. Ann. Glaciol. 32, 350354.

C. G. Johnson , B. P. Kokelaar , R. M. Iverson , M. Logan , R. G. LaHusen & J. M. N. T. Gray 2012 Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117, F01032.

V. Jomelli & P. Bertran 2001 Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geografis. Annal. Ser. A, Phys. Geograph. 83, 1528.

R. J. LeVeque 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

C. C. Lin & S. I. Rubinov 1948 On the flow behind curved shocks. J. Math. Phys. 27, 105129.

K. Louie & J. R. Ockendon 1991 Mathematical aspects of the theory of inviscid hypersonic flow. Phil. Trans. R. Soc. A 335, 121138.

A. Mangeney , F. Bouchut , N. Thomas , J. P. Vilotte & M. O. Bristeau 2007 Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. 112, F02017.

A. Mangeney-Castelnau , J. P. Vilotte , M. O. Bristeau , B. Perthame , F. Bouchut , C. Simeoni & S. Yerneni 2003 Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 108, 2527.

E. Mignot & N. Riviere 2010 Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open channel flow. Phys. Fluids 22, 117105.

H. Nessyahu & E. Tadmor 1990 Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408463.

O. Pouliquen 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11 (3), 542548.

O. Pouliquen & Y. Forterre 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.

E. C. Rericha , C. Bizon , M. Shattuck & H. Swinney 2002 Shocks in supersonic sand. Phys. Rev. Lett. 88, 014302.

T. Shinbrot & F. J. Muzzio 1998 Reverse buoyancy in shaken granular beds. Phys. Rev. Lett. 81 (20), 43654368.

Y. C. Tai , J. M. N. T. Gray , K. Hutter & S. Noelle 2001 Flow of dense avalanches past obstructions. Annal. Glaciol. 32, 281284.

Y. C. Tai , Y. Q. Wang , J. M. N. T. Gray & K. Hutter 1999 Methods of similitude in granular avalanche flows. In Advances In Cold-Region Thermal Engineering And Sciences: Technological, Environmental and Climatological Impact (ed. K. Hutter, Y. Q. Wang & H. Beer), Lecture Notes in Physics, vol. 533, pp. 415428. Springer.

M. Vinokur 1974 Conservation equations of gas dynamics in curvilinear coordinate systems. J. Comput. Phys. 14, 105125.

C. R. Wassgren , J. A. Cordova , R. Zenit & A. Karion 2003 Dilute granular flow around an immersed cylinder. Phys. Fluids 15 (11), 33183330.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title

Cui and Gray supplementary movie
Movie showing the development of the steady state non-pareille avalanche

 Unknown (5.1 MB)
5.1 MB

Cui and Gray supplementary movie
Movie showing the flow of a sand avalanche past a circular cylinder as in figures 7 and 8.

 Unknown (305 KB)
305 KB