Skip to main content

Hydrodynamics of micro-swimmers in films

  • A. J. T. M. Mathijssen (a1), A. Doostmohammadi (a1), J. M. Yeomans (a1) and T. N. Shendruk (a1)

One of the principal mechanisms by which surfaces and interfaces affect microbial life is by perturbing the hydrodynamic flows generated by swimming. By summing a recursive series of image systems, we derive a numerically tractable approximation to the three-dimensional flow fields of a stokeslet (point force) within a viscous film between a parallel no-slip surface and a no-shear interface and, from this Green’s function, we compute the flows produced by a force- and torque-free micro-swimmer. We also extend the exact solution of Liron & Mochon (J. Engng Maths, vol. 10 (4), 1976, pp. 287–303) to the film geometry, which demonstrates that the image series gives a satisfactory approximation to the swimmer flow fields if the film is sufficiently thick compared to the swimmer size, and we derive the swimmer flows in the thin-film limit. Concentrating on the thick-film case, we find that the dipole moment induces a bias towards swimmer accumulation at the no-slip wall rather than the water–air interface, but that higher-order multipole moments can oppose this. Based on the analytic predictions, we propose an experimental method to find the multipole coefficient that induces circular swimming trajectories, allowing one to analytically determine the swimmer’s three-dimensional position under a microscope.

Corresponding author
Email address for correspondence:
Hide All
Ardekani, A. M. & Gore, E. 2012 Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid. Phys. Rev. E 85 (5), 056309.
Bees, M. A., Andresen, P., Mosekilde, E. & Givskov, M. 2000 The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens . J. Math. Biol. 40 (1), 2763.
Berg, H. C. & Turner, L. 1990 Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophys. J. 58 (4), 919930.
Berke, A. P., Turner, L., Berg, H. C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102.
Blake, J. 1971a A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.
Blake, J. R. 1971b A note on the image system for a stokeslet in a no-slip boundary. Proc. Camb. Phil. Soc. 70, 303310.
Bukoreshtliev, N. V., Haase, K. & Pelling, A. E. 2013 Mechanical cues in cellular signalling and communication. Cell Tissue Res. 352 (1), 7794.
Chacón, R. 2013 Chaotic dynamics of a microswimmer in Poiseuille flow. Phys. Rev. E 88 (5), 052905.
Conrad, J. C. 2012 Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation. Rev. Microbiol. 163 (9–10), 619629.
Costanzo, A., Di Leonardo, R., Ruocco, G. & Angelani, L. 2012 Transport of self-propelling bacteria in micro-channel flow. J. Phys.: Condens. Matter 24 (6), 065101.
Crowdy, D., Lee, S., Samson, O., Lauga, E. & Hosoi, A. E. 2011 A two-dimensional model of low-Reynolds number swimming beneath a free surface. J. Fluid Mech. 681, 2447.
Crowdy, D. G. & Or, Y. 2010 Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall. Phys. Rev. E 81, 036313.
Dechesne, A., Wang, G., Gülez, G., Or, D. & Smets, B. F. 2010 Hydration-controlled bacterial motility and dispersal on surfaces. Proc. Natl Acad. Sci. USA 107 (32), 1436914372.
Di Leonardo, R., Dell’Arciprete, D., Angelani, L. & Iebba, V. 2011 Swimming with an image. Phys. Rev. Lett. 106, 038101.
Diluzio, W. R., Turner, L., Mayer, M., Garstecki, P., Weibel, D. B., Berg, H. C. & Whitesides, G. M. 2005 Escherichia coli swim on the right-hand side. Nature 435 (7046), 12711274.
Doostmohammadi, A., Stocker, R. & Ardekani, A. M. 2012 Low-Reynolds-number swimming at pycnoclines. Proc. Natl Acad. Sci. USA 109 (10), 38563861.
Drescher, K., Leptos, K. C., Tuval, I., Ishikawa, T., Pedley, T. J. & Goldstein, R. E. 2009 Dancing Volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 168101.
Figueroa-Morales, N., Miño, G., Rivera, A., Caballero, R., Clément, E., Altshuler, E. & Lindner, A. 2015 Living on the edge: transfer and traffic of E. coli in a confined flow. Soft Matt. 11, 62846293.
Frymier, P. D., Ford, R. M., Berg, H. C. & Cummings, P. T. 1995 Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl Acad. Sci. USA 92 (13), 61956199.
Gachelin, J., Miño, G., Berthet, H., Lindner, A., Rousselet, A. & Clément, É. 2013 Non-Newtonian viscosity of Escherichia coli suspensions. Phys. Rev. Lett. 110 (26), 268103.
Givskov, M., Eberl, L. & Molin, S. 1997 Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens . Fatigue Engng Mater. Struct. Microbiol. Lett. 148 (2), 115122.
de Graaf, J. & Stenhammar, J.2016 Stirring by periodic arrays of microswimmers. Preprint arXiv:1606.00213.
Grimont, P. A. & Grimont, F. 1978 The genus Serratia . Annu. Rev. Microbiol. 32 (1), 221248.
Guasto, J. S., Johnson, K. A. & Gollub, J. P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105 (16), 168102.
Guidobaldi, H. A., Jeyaram, Y., Condat, C. A., Oviedo, M., Berdakin, I., Moshchalkov, V. V., Giojalas, L. C., Silhanek, A. V. & Marconi, V. I. 2015 Disrupting the wall accumulation of human sperm cells by artificial corrugation. Biomicrofluidics 9 (2), 024122.
Guzmán-Lastra, F. & Soto, R. 2012 Stochastic resonance on the transverse displacement of swimmers in an oscillatory shear flow. Phys. Rev. E 86, 037301.
Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. 2004 Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2 (2), 95108.
Harshey, R. M. 2003 Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57 (1), 249273.
Harshey, R. M. & Matsuyama, T. 1994 Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc. Natl Acad. Sci. USA 91 (18), 86318635.
Hill, J., Kalkanci, O., McMurry, J. L. & Koser, H. 2007 Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98, 068101.
Howse, J. R., Jones, R. A., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.
Ishikawa, T., Locsei, J. & Pedley, T. 2010 Fluid particle diffusion in a semidilute suspension of model micro-organisms. Phys. Rev. E 82 (2), 021408.
Ishikawa, T. & Pedley, T. 2007 The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 588, 399435.
Ishimoto, K., Cosson, J. & Gaffney, E. A. 2016 A simulation study of sperm motility hydrodynamics near fish eggs and spheres. J. Theor. Biol. 389, 187197.
Jeanneret, R., Kantsler, V., Pushkin, D. O. & Polin, M. 2016 Entrainment dominates the interaction of microalgae with micron-sized objects. Nat. Commun. 7, 12518.
Jepson, A., Martinez, V. A., Schwarz-Linek, J., Morozov, A. & Poon, W. C. 2013 Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria. Phys. Rev. E 88 (4), 041002.
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. 2014 Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3, 02403.
Karimi, A. & Ardekani, A. 2013 Gyrotactic bioconvection at pycnoclines. J. Fluid Mech. 733, 245267.
Karimi, A., Karig, D., Kumar, A. & Ardekani, A. 2015 Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab on a Chip 15 (1), 2342.
Karimi, A., Yazdi, S. & Ardekani, A. M. 2013 Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7 (2), 021501.
Katija, K. 2012 Biogenic inputs to ocean mixing. J. Expl Biol. 215 (6), 10401049.
Kim, M. J. & Breuer, K. S. 2007 Controlled mixing in microfluidic systems using bacterial chemotaxis. Anal. Chem. 79 (3), 955959.
Kim, S. & Karilla, S. 1991 Microhydrodynamics: Butterworth Series of Chemical Engineering. Butterworth.
Kurtuldu, H., Guasto, J. S., Johnson, K. A. & Gollub, J. 2011 Enhancement of biomixing by swimming algal cells in two-dimensional films. Proc. Natl Acad. Sci. USA 108 (26), 1039110395.
Lambert, R. A., Picano, F., Breugem, W.-P. & Brandt, L. 2013 Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech. 733, 528557.
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.
Leptos, K. C., Guasto, J. S., Gollub, J., Pesci, A. I. & Goldstein, R. E. 2009 Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103 (19), 198103.
Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J. X., Maxey, M. R. & Brun, Y. V. 2011 Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84, 041932.
Li, G. & Tang, J. X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103, 078101.
Liron, N. & Mochon, S. 1976 Stokes flow for a stokeslet between two parallel flat plates. J. Engng Maths 10 (4), 287303.
Lopez, D. & Lauga, E. 2014 Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26 (7), 071902.
López, H. M., Gachelin, J., Douarche, C., Auradou, H. & Clément, E. 2015 Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115, 028301.
Magar, V., Goto, T. & Pedley, T. J. 2003 Nutrient uptake by a self-propelled steady squirmer. Q. J. Mech. Appl. Maths 56 (1), 6591.
Masoud, H. & Stone, H. A. 2014 A reciprocal theorem for Marangoni propulsion. J. Fluid Mech. 741, R4.
Masoud, H., Stone, H. A. & Shelley, M. J. 2013 On the rotation of porous ellipsoids in simple shear flows. J. Fluid Mech. 733, R6.
Mathijssen, A. J., Pushkin, D. O. & Yeomans, J. M. 2015 Tracer trajectories and displacement due to a micro-swimmer near a surface. J. Fluid Mech. 773, 498519.
Mathijssen, A. J. T. M., Doostmohammadi, A., Yeomans, J. M. & Shendruk, T. N. 2016a Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films. J. R. Soc. Interface 13 (115), 20150936.
Mathijssen, A. J. T. M., Shendruk, T. N., Yeomans, J. M. & Doostmohammadi, A. 2016b Upstream swimming in microbiological flows. Phys. Rev. Lett. 116, 028104.
Mino, G., Mallouk, T. E., Darnige, T., Hoyos, M., Dauchet, J., Dunstan, J., Soto, R., Wang, Y., Rousselet, A. & Clement, E. 2011 Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett. 106 (4), 048102.
Molaei, M., Barry, M., Stocker, R. & Sheng, J. 2014 Failed escape: solid surfaces prevent tumbling of Escherichia coli . Phys. Rev. Lett. 113 (6), 068103.
Or, Y. & Murray, R. M. 2009 Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E 79, 045302.
Ozarkar, S. S. & Sangani, A. S. 2008 A method for determining Stokes flow around particles near a wall or in a thin film bounded by a wall and a gas–liquid interface. Phys. Fluids 20 (6), 063301.
Paxton, W. F., Kistler, K. C., Olmeda, C. C., Sen, A., St Angelo, S. K., Cao, Y., Mallouk, T. E., Lammert, P. E. & Crespi, V. H. 2004 Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126 (41), 1342413431.
Pedley, T. J. & Kessler, J. O. 1987 The orientation of spheroidal microorganisms swimming in a flow field. Proc. R. Soc. Lond. B 231 (1262), 4770.
Pushkin, D. O. & Yeomans, J. M. 2014 Stirring by swimmers in confined microenvironments. J. Stat. Mech. 2014 (4), P04030.
Quiñones, B., Dulla, G. & Lindow, S. E. 2005 Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae . Mol. Plant–Microbe Interact. 18 (7), 682693.
Spagnolie, S. E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.
Staben, M. E., Zinchenko, A. Z. & Davis, R. H. 2003 Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys. Fluids 15 (6), 17111733.
Stone, H. A. & Masoud, H. 2015 Mobility of membrane-trapped particles. J. Fluid Mech. 781, 494505.
Vaccari, L., Allan, D., Sharifi-Mood, N., Singh, A., Leheny, R. & Stebe, K. 2015 Films of bacteria at interfaces: three stages of behaviour. Soft Matt. 11, 60626074.
Valadares, L. F., Tao, Y.-G., Zacharia, N. S., Kitaev, V., Galembeck, F., Kapral, R. & Ozin, G. A. 2010 Catalytic nanomotors: self-propelled sphere dimers. Small 6 (4), 565572.
Wang, S. & Ardekani, A. M. 2013 Swimming of a model ciliate near an air–liquid interface. Phys. Rev. E 87, 063010.
Zöttl, A. & Stark, H. 2012 Nonlinear dynamics of a microswimmer in Poiseuille flow. Phys. Rev. Lett. 108 (21), 218104.
Zöttl, A. & Stark, H. 2013 Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow. Eur. Phys. J. E 36 (1), 4.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed