Adrian, R. J., Meinhart, C. D. & Tomkins, C. D.
2000
Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.
422, 1–54.

Adrian, R. J.
2007
Hairpin vortex organization in wall turbulence. Phys. Fluids
19 (4), 041301.

Afzal, N.
1982
Fully developed turbulent flow in a pipe: an intermediate layer. Ing-Arch.
52, 355–377.

Ahn, J., Lee, J. H., Jang, S. J. & Sung, H. J.
2013
Direct numerical simulations of fully developed turbulent pipe flows for *Re*
_{𝜏} = 180, 544 and 934. Intl J. Heat Fluid Flow
44, 222–228.

Ahn, J., Lee, J. H., Lee, J., Kang, J.-H. & Sung, H. J.
2015
Direct numerical simulation of a 30*R* long turbulent pipe flow at *Re*
_{𝜏} = 3008. Phys. Fluids
27 (6), 065110.

del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D.
2006
Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech.
561, 329–358.

Balakumar, B. J. & Adrian, R. J.
2007
Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A
365 (1852), 665–681.

Bailey, S. C. C. & Smits, A. J.
2010
Experimental investigation of structure of large- and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.
651, 339–356.

Buschmann, M. H. & Gad-el Hak, M.
2010
Normal and cross-flow Reynolds stresses: differences between confined and semi-confined flows. Exp. Fluids
49 (1), 213–223.

Chin, C., Monty, J. P. & Ooi, A.
2014a
Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Intl J. Heat Fluid Flow
45, 33–40.

Chin, C., Philip, J., Klewicki, J., Ooi, A. & Marusic, I.
2014b
Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows. J. Fluid Mech.
757, 747–769.

Christensen, K. T. & Adrian, R. J.
2001
Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech.
431, 433–443.

Chung, D., Marusic, I., Monty, J. P., Vallikivi, M. & Smits, A. J.
2015
On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. Exp. Fluids
56 (7), 1–10.

El Khoury, G. K., Schlatter, P., Brethouwer, G. & Johansson, A. V.
2014
Turbulent pipe flow: statistics, *Re*-dependence, structures and similarities with channel and boundary layer flows. J. Phys.: Conf. Ser.
506, 012010.

Ganapathisubramani, B.
2008
Statistical structure of momentum sources and sinks in the outer region of a turbulent boundary layer. J. Fluid Mech.
606, 225–237.

Guala, M., Hommema, S. E. & Adrian, R. J.
2006
Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.
554, 521–542.

Hutchins, N. & Marusic, I.
2007
Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A
365 (1852), 647–664.

Hwang, J., Lee, J., Sung, H. J. & Zaki, T. A.
2016
Inner–outer interactions of large-scale structures in turbulent channel flow. J. Fluid Mech.
790, 128–157.

Jiménez, J., Hoyas, S., Simens, M. P. & Mizuno, Y.
2010
Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech.
657, 335–360.

Jiménez, J. & Pinelli, A.
1999
The autonomous cycle of near-wall turbulence. J. Fluid Mech.
389, 335–359.

Kim, K., Baek, S. J. & Sung, H. J.
2002
An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids
38 (2), 125–138.

Kim, K. C. & Adrian, R. J.
1999
Very large-scale motion in the outer layer. Phys. Fluids
11 (2), 417–422.

Lee, J., Ahn, J. & Sung, H. J.
2015
Comparison of large-and very-large-scale motions in turbulent pipe and channel flows. Phys. Fluids
27 (2), 025101.

Lee, J., Lee, J. H., Choi, J.-I. & Sung, H. J.
2014
Spatial organization of large-and very- large-scale motions in a turbulent channel flow. J. Fluid Mech.
749, 818–840.

Lee, J. H. & Sung, H. J.
2011
Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech.
673, 80–120.

Lee, J. H. & Sung, H. J.
2013
Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations. Phys. Fluids
25 (4), 045103.

Lee, M. & Moser, R. D.
2015
Direct numerical simulation of turbulent channel flow up to *Re*
_{𝜏} = 5200. J. Fluid Mech.
774, 395–415.

Lozano-Durán, A., Flores, O. & Jiménez, J.
2012
The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech.
694, 100–130.

Lu, S. S. & Willmarth, W. W.
1973
Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech.
60, 481–511.

Marusic, I., Mathis, R. & Hutchins, N.
2010
High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow
31 (3), 418–428.

Mathis, R., Hutchins, N. & Marusic, I.
2009a
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.
628, 311–337.

Mathis, R., Monty, J. P., Hutchins, N. & Marusic, I.
2009b
Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids
21 (11), 111703.

Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S.
2009
A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech.
632, 431–442.

Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S.
2007
Large-scale features in turbulent pipe and channel flows. J. Fluid Mech.
589, 147–156.

Morrill-Winter, C. & Klewicki, J.
2013
Influences of boundary layer scale separation on the vorticity transport contribution to turbulent inertia. Phys. Fluids
25 (1), 015108.

Nieuwstadt, F. T. M. & Bradshaw, P.
1997
Similarities and differences of turbulent boundary-layer, pipe and channel flow. In Boundary-Layer Separation in Aircraft Aerodynamics (ed. Henkes, R. A. W. M. & Bakker, P. G.), Delft University Press.

Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I.
2014
Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech.
746, R1.

Schoppa, W. & Hussain, F.
2002
Coherent structure generation in near-wall turbulence. J. Fluid Mech.
453, 57–108.

Tennekes, H. & Lumley, J. L.
1972
A First Course in Turbulence. MIT Press.

Theodorsen, T.
1952
Mechanism of turbulence. In Proceedings of the Second Midwestern Conference on Fluid Mechanics, pp. 1–18. Ohio State University.

Tomkins, C. D. & Adrian, R. J.
2003
Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech.
490, 37–74.

Wallace, J. M., Eckelmann, H. & Brodkey, R. S.
1972
The wall region in turbulent shear flow. J. Fluid Mech.
54, 39–48.

Wei, T., Fife, P., Klewicki, J. & Mcmurtry, P.
2005
Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech.
522, 303–327.

Willmarth, W. W. & Lu, S. S.
1972
Structure of the Reynolds stress near the wall. J. Fluid Mech.
55, 65–92.

Wu, X., Baltzer, J. R. & Adrian, R. J.
2012
Direct numerical simulation of a 30*R* long turbulent pipe flow at *R*
^{+} = 685: large- and very large-scale motions. J. Fluid Mech.
698, 235–281.