Skip to main content
×
Home

Influence of large-scale accelerating motions on turbulent pipe and channel flows

  • Jinyul Hwang (a1), Jin Lee (a1) and Hyung Jin Sung (a1)
Abstract

Direct numerical simulation data from turbulent pipe and channel flows at $\mathit{Re}_{\unicode[STIX]{x1D70F}}\approx 930$ are used to investigate their statistical difference by focusing on large-scale motions (LSMs). The contribution to the bulk production of turbulent kinetic energy shows marked differences in the overlap and core regions. These discrepancies arise from the dominant contributions of the LSMs ( $\unicode[STIX]{x1D706}_{x}>3\unicode[STIX]{x1D6FF}$ ) to the Reynolds shear stress in the channel flow. The spectrum of the net Reynolds shear force reveals that the LSMs accelerate the mean flow in the overlap region. The net force spectrum is further decomposed into the spectra of velocity–vorticity correlations, $\langle v\unicode[STIX]{x1D714}_{z}\rangle$ and $\langle -w\unicode[STIX]{x1D714}_{y}\rangle$ , which are related to the advective vorticity transport and the change-of-scale effect, respectively. The dominance of large-scale accelerating motions (LSAMs) in the overlap region of the channel flow is due to the contribution of $\langle -w\unicode[STIX]{x1D714}_{y}\rangle$ at longer wavelengths ( $\unicode[STIX]{x1D706}_{x}>3\unicode[STIX]{x1D6FF}$ ), The LSAMs are related to the long low-speed regions, and these regions are longer and wider in the channel flow than in the pipe flow. Due to the pipe curvature, the spanwise size of the LSMs is restricted by neighbouring LSMs and the spanwise velocity fluctuations are reduced. The contribution of $\langle -w\unicode[STIX]{x1D714}_{y}\rangle$ to the acceleration is prominent in the channel flow, leading to the dominance of the LSAMs associated with the change-of-scale effect.

Copyright
Corresponding author
Email address for correspondence: hjsung@kaist.ac.kr
References
Hide All
Adrian R. J., Meinhart C. D. & Tomkins C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Adrian R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
Afzal N. 1982 Fully developed turbulent flow in a pipe: an intermediate layer. Ing-Arch. 52, 355377.
Ahn J., Lee J. H., Jang S. J. & Sung H. J. 2013 Direct numerical simulations of fully developed turbulent pipe flows for Re 𝜏 = 180, 544 and 934. Intl J. Heat Fluid Flow 44, 222228.
Ahn J., Lee J. H., Lee J., Kang J.-H. & Sung H. J. 2015 Direct numerical simulation of a 30R long turbulent pipe flow at Re 𝜏 = 3008. Phys. Fluids 27 (6), 065110.
del Álamo J. C., Jiménez J., Zandonade P. & Moser R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.
Balakumar B. J. & Adrian R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365 (1852), 665681.
Bailey S. C. C. & Smits A. J. 2010 Experimental investigation of structure of large- and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 651, 339356.
Buschmann M. H. & Gad-el Hak M. 2010 Normal and cross-flow Reynolds stresses: differences between confined and semi-confined flows. Exp. Fluids 49 (1), 213223.
Chin C., Monty J. P. & Ooi A. 2014a Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Intl J. Heat Fluid Flow 45, 3340.
Chin C., Philip J., Klewicki J., Ooi A. & Marusic I. 2014b Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows. J. Fluid Mech. 757, 747769.
Christensen K. T. & Adrian R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.
Chung D., Marusic I., Monty J. P., Vallikivi M. & Smits A. J. 2015 On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. Exp. Fluids 56 (7), 110.
El Khoury G. K., Schlatter P., Brethouwer G. & Johansson A. V. 2014 Turbulent pipe flow: statistics, Re-dependence, structures and similarities with channel and boundary layer flows. J. Phys.: Conf. Ser. 506, 012010.
Ganapathisubramani B. 2008 Statistical structure of momentum sources and sinks in the outer region of a turbulent boundary layer. J. Fluid Mech. 606, 225237.
Guala M., Hommema S. E. & Adrian R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.
Hutchins N. & Marusic I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.
Hwang J., Lee J., Sung H. J. & Zaki T. A. 2016 Inner–outer interactions of large-scale structures in turbulent channel flow. J. Fluid Mech. 790, 128157.
Jiménez J., Hoyas S., Simens M. P. & Mizuno Y. 2010 Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.
Jiménez J. & Pinelli A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.
Kim K., Baek S. J. & Sung H. J. 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 38 (2), 125138.
Kim K. C. & Adrian R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.
Lee J., Ahn J. & Sung H. J. 2015 Comparison of large-and very-large-scale motions in turbulent pipe and channel flows. Phys. Fluids 27 (2), 025101.
Lee J., Lee J. H., Choi J.-I. & Sung H. J. 2014 Spatial organization of large-and very- large-scale motions in a turbulent channel flow. J. Fluid Mech. 749, 818840.
Lee J. H. & Sung H. J. 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.
Lee J. H. & Sung H. J. 2013 Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations. Phys. Fluids 25 (4), 045103.
Lee M. & Moser R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 5200. J. Fluid Mech. 774, 395415.
Lozano-Durán A., Flores O. & Jiménez J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.
Lu S. S. & Willmarth W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481511.
Marusic I., Mathis R. & Hutchins N. 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31 (3), 418428.
Mathis R., Hutchins N. & Marusic I. 2009a Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Mathis R., Monty J. P., Hutchins N. & Marusic I. 2009b Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids 21 (11), 111703.
Monty J. P., Hutchins N., Ng H. C. H., Marusic I. & Chong M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.
Monty J. P., Stewart J. A., Williams R. C. & Chong M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.
Morrill-Winter C. & Klewicki J. 2013 Influences of boundary layer scale separation on the vorticity transport contribution to turbulent inertia. Phys. Fluids 25 (1), 015108.
Nieuwstadt F. T. M. & Bradshaw P. 1997 Similarities and differences of turbulent boundary-layer, pipe and channel flow. In Boundary-Layer Separation in Aircraft Aerodynamics (ed. Henkes R. A. W. M. & Bakker P. G.), Delft University Press.
Talluru K. M., Baidya R., Hutchins N. & Marusic I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.
Schoppa W. & Hussain F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.
Tennekes H. & Lumley J. L. 1972 A First Course in Turbulence. MIT Press.
Theodorsen T. 1952 Mechanism of turbulence. In Proceedings of the Second Midwestern Conference on Fluid Mechanics, pp. 118. Ohio State University.
Tomkins C. D. & Adrian R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.
Wallace J. M., Eckelmann H. & Brodkey R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.
Wei T., Fife P., Klewicki J. & Mcmurtry P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.
Willmarth W. W. & Lu S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 6592.
Wu X., Baltzer J. R. & Adrian R. J. 2012 Direct numerical simulation of a 30R long turbulent pipe flow at R + = 685: large- and very large-scale motions. J. Fluid Mech. 698, 235281.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 276 *
Loading metrics...

Abstract views

Total abstract views: 395 *
Loading metrics...

* Views captured on Cambridge Core between 9th September 2016 - 24th November 2017. This data will be updated every 24 hours.