Skip to main content
×
×
Home

Investigation of symmetry breaking in periodic gravity–capillary waves

  • T. Gao (a1), Z. Wang (a2) (a3) and J.-M. Vanden-Broeck (a1)
Abstract

In this paper, fully nonlinear non-symmetric periodic gravity–capillary waves propagating at the surface of an inviscid and incompressible fluid are investigated. This problem was pioneered analytically by Zufiria (J. Fluid Mech., vol. 184, 1987c, pp. 183–206) and numerically by Shimizu & Shōji (Japan J. Ind. Appl. Maths, vol. 29 (2), 2012, pp. 331–353). We use a numerical method based on conformal mapping and series truncation to search for new solutions other than those shown in Zufiria (1987c) and Shimizu & Shōji (2012). It is found that, in the case of infinite-depth, non-symmetric waves with two to seven peaks within one wavelength exist and they all appear via symmetry-breaking bifurcations. Fully exploring these waves by changing the parameters yields the discovery of new types of non-symmetric solutions which form isolated branches without symmetry-breaking points. The existence of non-symmetric waves in water of finite depth is also confirmed, by using the value of the streamfunction at the bottom as the continuation parameter.

Copyright
Corresponding author
Email address for correspondence: z.wang5@bath.ac.uk
References
Hide All
Blyth M. G. & Vanden-Broeck J.-M. 2004 New solutions for capillary waves on fluid sheets. J. Fluid Mech. 507, 255264.
Chen B. & Saffman P. G. 1980 Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Maths 62, 121.
Craig W. & Sternberg P. 1988 Symmetry of solitary waves. Comm. PDE 13, 603633.
Crapper G. D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2, 532540.
Crowdy D. G. 1999 Exact solutions for steady capillary waves on a fluid annulus. J. Nonlinear Sci. 9 (6), 615640.
Deconinck B. & Trichtchenko O. 2014 Stability of periodic gravity waves in the presence of surface tension. Eur. J. Mech. (B/Fluids) 46, 97108.
Dias F. 1994 Capillary-gravity periodic and solitary waves. Phys. Fluids 6, 22392241.
Diorio J. D., Cho Y., Duncan J. H. & Akylas T. R. 2009 Gravity–capillary lumps generated by a moving pressure source. Phys. Rev. Lett. 103, 214502.
Diorio J. D., Cho Y., Duncan J. H. & Akylas T. R. 2011 Resonantly forced gravity–capillary lumps on deep water. Part 1. Experiments. J. Fluid Mech. 672, 268287.
Gao T. & Vanden-Broeck J.-M. 2014 Numerical studies of two-dimensional hydroelastic periodic and generalised solitary waves. Phys. Fluids 26, 087101.
Getling A. V. 1998 Rayleigh-Bénard Convection; Structures and Dynamics. World Scientific.
Keller H. B. 1977 Numerical solutions of bifurcation and nonlinear eigenvalue problem. In Applications of Bifurcation Theory (ed. Rabinowitz P.), pp. 359384.
Longuet-Higgins M. S. 1988 Limiting forms for capillary-gravity waves. J. Fluid Mech. 194, 351375.
Moiola J. L. & Chen G. 1996 Hopf Bifurcation Analysis. World Scientific.
Kinnersley W. 1976 Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech. 77 (02), 229241.
Okamoto H. & Shōji M. 1991 Nonexistence of bifurcation from Crapper’s pure capillary waves. Res. Inst. Math. Sci. Kokyuroku Kyoto Univ. 745, 2138.
Sattinger D. H. 1980 Bifurcation and symmetry breaking in applied mathematics. Bull. Am. Math. Soc. 3 (2), 779819.
Shimizu C. & Shōji M. 2012 Appearance and disappearance of non-symmetric progressive capillary-gravity waves of deep water. Japan J. Ind. Appl. Maths 29 (2), 331353.
Stokes G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441473.
Vanden-Broeck J.-M. 1996 Capillary waves with variable surface tension. Z. Angew. Math. Phys. 47 (5), 799808.
Vanden-Broeck J.-M. 2010 Gravity–Capillary Free-Surface Flows. Cambridge University Press.
Vanden-Broeck J.-M. & Dias F. 1992 Gravity–capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549557.
Vanden-Broeck J.-M. & Keller J. B. 1980 A new family of capillary waves. J. Fluid Mech. 98, 161169.
Wang Z. & Vanden-Broeck J.-M. 2015 Multilump symmetric and non-symmetric gravity–capillary solitary waves in deep water. SIAM J. Appl. Maths 75 (3), 978998.
Wang Z., Vanden-Broeck J.-M. & Milewski P. A. 2014 Asymmetric gravity–capillary solitary waves on deep water. J. Fluid Mech. 759, R2.
Wilton J. R. 1915 On ripples. Phil. Mag. 29 (173), 688700.
Zufiria J. A. 1987a Weakly nonlinear non-symmetric gravity waves on water of finite depth. J. Fluid Mech. 180, 371385.
Zufiria J. A. 1987b Non-symmetric gravity waves on water of infinite depth. J. Fluid Mech. 181, 1739.
Zufiria J. A. 1987c Symmetry breaking in periodic and solitary gravity–capillary waves on water of finite depth. J. Fluid Mech. 184, 183206.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 6
Total number of PDF views: 98 *
Loading metrics...

Abstract views

Total abstract views: 215 *
Loading metrics...

* Views captured on Cambridge Core between 15th December 2016 - 18th December 2017. This data will be updated every 24 hours.