Skip to main content

Local interfacial stability near a zero vorticity point

  • Yu-Hau Tseng (a1) and Andrea Prosperetti (a1) (a2)

It is often observed that small drops or bubbles detach from the interface separating two co-flowing immiscible fluids. The size of these drops or bubbles can be orders of magnitude smaller than the length scales of the parent fluid mass. Examples are tip-streaming from drops or coaxial jets in microfluidics, selective withdrawal, ‘skirt’ formation around bubbles or drops, and others. It is argued that these phenomena are all reducible to a common instability that can occur due to a local convergence of streamlines in the neighbourhood of a zero-vorticity point or line on the interface. When surfactants are present, this converging flow tends to concentrate them in these regions weakening the effect of surface tension, which is the only mechanism opposing the instability. Several analytical and numerical calculations are presented to substantiate this interpretation of the phenomenon. In addition to some idealized cases, the results of two-dimensional simulations of co-flowing jets and a rising drop are presented.

Corresponding author
Email address for correspondence:
Hide All

Present address: Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung City 81148, Taiwan, ROC.

Hide All
Adami, S., Hu, X. Y. & Adams, N. A.2010 Tipstreaming of a drop in simple shear flow in the presence of surfactant. arXiv:1010.3646.
Anna, S. L., Bontoux, N. & Stone, H. A. 2003 Formation of dispersions using flow focusing in microchannels. Appl. Phys. Lett. 82, 364366.
Barrero, A. & Loscertales, I. G. 2007 Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89106.
Basaran, O. A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48, 18421848.
Bhaga, D. & Weber, M. E. 1981 Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech. 105, 6185.
Blanchette, F. & Zhang, W. W. 2009 Force balance at the transition from selective withdrawal to viscous entrainment. Phys. Rev. Lett. 102, 144501.
de Bruijn, R. A. 1993 Tipstreaming of drops in simple shear flows. Chem. Engng Sci. 48, 277284.
Cohen, I. & Nagel, S. R. 2002 Scaling at the selective withdrawal transition through a tube suspended above the fluid surface. Phys. Rev. Lett. 88, 074501.
Collins, R. T., Krishnaraj, S., Harris, M. T. & Basaran, O. A. 2013 Universal scaling laws for the disintegration of electrified drops. Proc. Natl Acad. Sci. USA 110, 49054910.
Eggleton, C. D. & Stebe, K. J. 1998 An adsorption–desorption-controlled surfactant on a deforming droplet. J. Colloid Interface Sci. 208, 6880.
Eggleton, C. D., Tsai, T.-M. & Stebe, K. J. 2001 Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87, 048302.
Frankel, I. & Weihs, D. 1985 Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges). J. Fluid Mech. 155, 289307.
Gopalan, B. & Katz, J. 2010 Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets. Phys. Rev. Lett. 104, 054501.
Gordillo, J. M., Sevilla, A. & Campo-Cortes, F. 2014 Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J. Fluid Mech. 738, 335357.
Hao, Y. & Prosperetti, A. 1999 The effect of viscosity on the spherical stability of oscillating gas bubbles. Phys. Fluids 11, 13091317.
Jeong, W. C., Lim, J. M., Choi, J. H., Kim, J. H., Lee, Y. J., Kim, S. H., Lee, G., Kim, J. D., Yi, G. R. & Yang, S. M. 2012 Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices. Lab on a Chip 12, 14461453.
Lai, M.-C., Tseng, Y.-H. & Huang, H. 2008 An immersed boundary method for interfacial flows with insoluble surfactant. J. Comput. Phys. 227, 72797293.
Lu, X. Z. & Prosperetti, A. 2009 Numerical study of Taylor bubbles. Ind. Engng Chem. Res. 48, 242252.
Marín, A. G., Campo-Cortés, F. & Gordillo, J. M. 2009 Generation of micron-size drops and bubbles through viscous coflows. Colloids Surf. A 344, 27.
Mulligan, M. K. & Rothstein, J. P. 2011 The effect of confinement-induced shear on drop deformation and breakup in microfluidic extensional flows. Phys. Fluids 23, 022004.
OSCA, Oil Spill Commission Action, 2011 The use of surface and subsea dispersants during the BP Deepwater Horizon oil spill. Available at:
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 9698.
Sherwood, J. D. 1984 Tip streaming from slender drops in a nonlinear extensional flow. J. Fluid Mech. 144, 281295.
Stone, H. A. 1990 A simple derivation of the time-dependent convective diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111112.
Suryo, R. & Basaran, O. A. 2006 Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18, 082102.
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.
Thomson, J. J. & Newall, H. F. 1885 On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. Lond. A 29, 417436.
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 218 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th March 2018. This data will be updated every 24 hours.