Skip to main content Accesibility Help
×
×
Home

New singularities for Stokes waves

  • Samuel C. Crew (a1) and Philippe H. Trinh (a1) (a2)
Abstract

In 1880, Stokes famously demonstrated that the singularity that occurs at the crest of the steepest possible water wave in infinite depth must correspond to a corner of $120^{\circ }$ . Here, the complex velocity scales like $f^{1/3}$ where $f$ is the complex potential. Later in 1973, Grant showed that for any wave away from the steepest configuration, the singularity $f=f^{\ast }$ moves into the complex plane, and is of order $(f-f^{\ast })^{1/2}$ (Grant J. Fluid Mech., vol. 59, 1973, pp. 257–262). Grant conjectured that as the highest wave is approached, other singularities must coalesce at the crest so as to cancel the square-root behaviour. Despite recent advances, the complete singularity structure of the Stokes wave is still not well understood. In this work, we develop numerical methods for constructing the Riemann surface that represents the extension of the water wave into the complex plane. We show that a countably infinite number of distinct singularities exist on other branches of the solution, and that these singularities coalesce as Stokes’ highest wave is approached.

Copyright
Corresponding author
Email address for correspondence: trinh@maths.ox.ac.uk
References
Hide All
Baker, G. A. & Graves-Morris, P. R. 1996 Padé Approximants. Cambridge University Press.
Baker, G. R. & Xie, C. 2011 Singularities in the complex physical plane for deep water waves. J. Fluid Mech. 685, 83116.
Chapman, S. J., Trinh, P. H. & Witelski, T. P. 2013 Exponential asymptotics for thin film rupture. SIAM J. Appl. Maths 73 (1), 232253.
Chen, B. & Saffman, P. G. 1980 Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Maths 62, 121.
Cokelet, E. D. 1977 Steep gravity waves in water of arbitrary uniform depth. Phil. Trans. R. Soc. Lond. A 286 (1335), 183230.
Costin, O. & Costin, R. D. 2001 On the formation of singularities of solutions of nonlinear differential systems in antistokes directions. Invent. Math. 145 (3), 425485.
Dallaston, M. C. & McCue, S. W. 2010 Accurate series solutions for gravity-driven Stokes waves. Phys. Fluids 22 (8), 082104.
Drennan, W. M.1988 Accurate calculations of Stokes water wave. PhD thesis, University of Waterloo.
Dyachenko, S. A., Lushnikov, P. M. & Korotkevich, A. O. 2014 Complex singularity of a Stokes wave. J. Expl Theor. Phys. Lett. 98 (11), 675679.
Dyachenko, S. A., Lushnikov, P. M. & Korotkevich, A. O.2015 Branch cuts of Stokes wave on deep water. Part I: numerical solution and Padé approximation. Preprint, arXiv:1507.02784.
Grant, M. A. 1973 The singularity at the crest of a finite amplitude progressive Stokes wave. J. Fluid Mech. 59, 257262.
Longuet-Higgins, M. S. 1995 Parasitic capillary waves: a direct calculation. J. Fluid Mech. 301, 79107.
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80, 721741.
Longuet-Higgins, M. S. & Fox, M. J. H. 1978 Theory of the almost-highest wave. Part 2. Matching and analytic extension. J. Fluid Mech. 85, 769786.
Lushnikov, P. M.2015 Branch cuts of Stokes wave on deep water. Part II: structure and location of branch points in infinite set of sheets of Riemann surface. Preprint arXiv:1509.03393.
Lushnikov, P. M., Dyachenko, S. A. & Korotkevich, A. O. 2015 Branch cut singularity of Stokes wave on deep water. In The Ninth IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena. University of Georgia.
Olfe, D. B. & Rottman, J. W. 1980 Some new highest-wave solutions for deep-water waves of permanent form. J. Fluid Mech. 100 (4), 801810.
Schwartz, L. W.1972 Analytic continuation of Stokes’ expansion for gravity waves. PhD thesis, Stanford University.
Schwartz, L. W. 1974 Computer extension and analytic continuation of Stokes’ expansion for gravity waves. J. Fluid Mech. 62, 553578.
Schwartz, L. W. & Fenton, J. D. 1982 Strongly nonlinear waves. Annu. Rev. Fluid Mech. 14, 3960.
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.
Stokes, G. G. 1880a Appendices and supplement to a paper on the theory of oscillatory waves. In Mathematical and Physical Papers, vol. 1. Cambridge University Press.
Stokes, G. G. 1880b Appendix B. Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. In Mathematical and Physical Papers, vol. 1, pp. 225228. Cambridge University Press.
Stokes, G. G. 1880c Letter from Stokes to Kelvin, 15 September 1880. In The Correspondence Between Sir George Gabriel Stokes and Sir William Thomson, Baron Kelvin of Largs (ed. Wilson, D. B.), vol. 2, pp. 498501. Cambridge University Press.
Tanveer, S. 1991 Singularities in water waves and Rayleigh–Taylor instablity. Proc. R. Soc. Lond. A 435, 137158.
Toland, J. F. 1978 On the existence of a wave of greatest height and Stokes’s conjecture. Proc. R. Soc. Lond. A 363 (1715), 469485.
Toland, J. F. 1996 Stokes waves. Topol. Meth. Nonlinear Anal. 7, 148.
Trinh, P. H. & Chapman, S. J. 2013a New gravity-capillary waves at low speeds. Part 1. Linear theory. J. Fluid Mech. 724, 367391.
Trinh, P. H. & Chapman, S. J. 2013b New gravity-capillary waves at low speeds. Part 2. Nonlinear theory. J. Fluid Mech. 724, 392424.
Trinh, P. H. & Chapman, S. J. 2015 Exponential asymptotics and problems with coalescing singularities. Nonlinearity 28 (5), 12291256.
Trinh, P. H., Chapman, S. J. & Vanden-Broeck, J.-M. 2011 Do waveless ships exist? Results for single-cornered hulls. J. Fluid Mech. 685, 413439.
Vanden-Broeck, J.-M. 1983 Some new gravity waves in water of finite depth. Phys. Fluids 26 (9), 23852387.
Vanden-Broeck, J.-M. 1986 Steep gravity waves: Havelock’s method revisited. Phys. Fluids 29 (9), 30843085.
Vanden-Broeck, J.-M. 2010 Gravity-Capillary Free-Surface Flows. Cambridge University Press.
Wehausen, J. V. & Laitone, E. V. 1960 Surface waves. In Handbuch der Physik (ed. Flugge, S. & Truesdell, C.), vol. IX, pp. 446778. Springer.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed