Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Caupin, Frédéric 2015. Escaping the no man's land: Recent experiments on metastable liquid water. Journal of Non-Crystalline Solids, Vol. 407, p. 441.

    Ohl, Siew-Wan and Ohl, Claus-Dieter 2016. Handbook of Ultrasonics and Sonochemistry.

    Stan, Claudiu A. Willmott, Philip R. Stone, Howard A. Koglin, Jason E. Liang, Mengning Aquila, Andrew L. Robinson, Joseph S. Gumerlock, Karl L. Blaj, Gabriel Sierra, Raymond G. Boutet, Sébastien Guillet, Serge A. H. Curtis, Robin H. Vetter, Sharon L. Loos, Henrik Turner, James L. and Decker, Franz-Josef 2016. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves. The Journal of Physical Chemistry Letters, Vol. 7, Issue. 11, p. 2055.

  • Journal of Fluid Mechanics, Volume 733
  • October 2013, R3

Nucleating bubble clouds with a pair of laser-induced shocks and bubbles

  • Pedro A. Quinto-Su (a1) and Keita Ando (a2)
  • DOI:
  • Published online: 23 September 2013

Laser-induced optical breakdown at two spatial locations in ultrapure water saturated with ambient gas is used to nucleate microscopic bubble clouds with lifetimes of tens of nanoseconds. The liquid is ruptured via the interaction of a pair of laser-induced shocks and bubbles. We find that the acoustically nucleated micro-bubbles appear in a localized region defined by the plane that bisects the pair of foci, where rarefaction waves (reflected from the laser-induced bubbles) merge. We measure the probability for acoustic nucleation as a function of the separation between the foci, and the minimum pressures for each separation are calculated with Euler flow simulations. The simulations show that the liquid is exposed to negative pressures for 3–17 ns. A statistical threshold pressure for cavitation inception (0.5 probability) of $- 20. 1\pm 3. 4~\mathrm{MPa} $ is extracted from the measured probabilities and the calculated minimum pressures.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Ando , A. Q. Liu & C. D. Ohl 2012 Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett. 109, 044501.

A. Arvengas , K. Davitt & F. Caupin 2011 Fiber optic probe hydrophone for the study of acoustic cavitation in water. Rev. Sci. Instrum. 82, 034904.

N. F. Bunkin & F. V. Bunkin 2013 Bubston structure of water and aqueous solutions of electrolytes. Phys. Wave Phenom. 21, 81109.

N. F. Bunkin , N. V. Suyazov , A. V. Shkirin , P. S. Ignatiev & K. V. Indukaev 2009 Nanoscale structure of dissolved air bubbles in water as studied by measuring the elements of the scattering matrix. J. Chem. Phys 130, 134308.

H. Y. Chu & D. K. Chen 2013 Observations of three-dimensional Richtmyer–Meshkov instability on a membraneless gas bubble. Phys. Rev. E 87, 051002.

S. Dicker , M. Mleczko , G. Schmitz & S. P. Wrenn 2010 Determination of microbubble cavitation threshold pressure as function of shell chemistry. Bubble Sci. Eng. Technol. 2, 5564.

E. Herbert , S. Balibar & F. Caupin 2006 Cavitation pressure in water. Phys. Rev. E 74, 041603.

A. K. Jayasinghe , J. Rohner & M. S. Hutson 2011 Holographic UV laser microsurgery. Biomed. Opt. Express 2, 25902599.

E. Johnsen & T. Colonius 2006 Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715732.

G. Layes , G. Jourdan & L. Houas 2003 Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys. Rev. Lett. 91, 174502.

T. G. Leighton 1994 The Acoustic Bubble. Academic Press.

A. D. Maxwell , C. A. Cain , T. L. Hall , J. B. Fowlkes & Z. Xu 2013 Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. Ultrasound Med. Biol. 39, 449465.

A. D. Maxwell , T. Y. Wang , A. Cain , J. B. Fowlkes , O. A. Sapozhnikov , M. R. Bailey & Z. Xu 2011 Cavitation clouds created by shock scattering from bubbles during histotripsy. J. Acoust. Soc. Am. 130, 18881898.

C. D. Ohl & S. W. Ohl 2013 Bubble Dynamics and Shock Waves, pp. 331. Springer.

P. A. Quinto-Su , X. H. Huang , S. R. Gonzalez-Avila , T. Wu & C. D. Ohl 2010 Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys. Rev. Lett. 104, 014501.

D. Ranjan , J. Oakley & R. Bonazza 2011 Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117149.

G. N. Sankin & V. S. Teslenko 2003 Two-threshold cavitation regime. Dokl. Phys. 48, 665668.

G. N. Sankin , W. N. Simmons , S. L. Zhu & P. Zhong 2005 Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett. 95, 034501.

G. N. Sankin , F. Yuan & P. Zhong 2010 Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys. Rev. Lett. 105, 078101.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Quinto-Su et al. supplementary material
Supplementary material

 Unknown (382 KB)
382 KB

Quinto-Su et al. supplementary movie
Pressure evolution along the axis of symmetry for $d=50.9$ $\mu$m

 Unknown (812 KB)
812 KB