Skip to main content Accessibility help

On the origin of the circular hydraulic jump in a thin liquid film

  • Rajesh K. Bhagat (a1), N. K. Jha (a2), P. F. Linden (a2) and D. Ian Wilson (a1)


This study explores the formation of circular thin-film hydraulic jumps caused by the normal impact of a jet on an infinite planar surface. For more than a century, it has been believed that all hydraulic jumps are created due to gravity. However, we show that these thin-film hydraulic jumps result from energy loss due to surface tension and viscous forces alone. We show that, at the jump, surface tension and viscous forces balance the momentum in the liquid film and gravity plays no significant role. Experiments show no dependence on the orientation of the surface and a scaling relation balancing viscous forces and surface tension collapses the experimental data. A theoretical analysis shows that the downstream transport of surface energy is the previously neglected critical ingredient in these flows, and that capillary waves play the role of gravity waves in a traditional jump in demarcating the transition from the supercritical to subcritical flow associated with these jumps.


Corresponding author

Email address for correspondence:


Hide All
Avedisian, C. T. & Zhao, Z. 2000 The circular hydraulic jump in low gravity. Proc. R. Soc. Lond. A 456, 21272151.
Bhagat, R. K. & Wilson, D. I. 2016 Flow in the thin film created by a coherent turbulent water jet impinging on a vertical wall. Chem. Engng Sci. 152, 606623.
Bidone, G. 1819 Le remou et sur la propagation des ondes. Rep. R. Sci. Acad. Turin 12, 21112.
Bohr, T., Dimon, P. & Putkaradze, V. 1993 Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635648.
Bush, J. W. M. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid Mech. 489, 229238.
Button, E. C., Davidson, J. F., Jameson, G. J. & Sader, J. E. 2010 Water bells formed on the underside of a horizontal plate. Part 2. Theory. J. Fluid Mech. 649, 4568.
Godwin, R. P. 1993 The hydraulic jump (shocks and viscous flow in the kitchen sink). Am. J. Phys. 61 (9), 829832.
Hager, W. H. 2013 Energy Dissipators and Hydraulic Jump, vol. 8. Springer.
Hansen, S. H., Hørlück, S., Zauner, D., Dimon, P., Ellegaard, C. & Creagh, S. C. 1997 Geometric orbits of surface waves from a circular hydraulic jump. Phys. Rev. E 55 (6), 70487061.
Jameson, G. J., Jenkins, C. E., Button, E. C. & Sader, J. E. 2010 Water bells formed on the underside of a horizontal plate. Part 1. Experimental investigation. J. Fluid Mech. 649, 1943.
Kasimov, A. R. 2008 A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue. J. Fluid Mech. 601, 189198.
Kurihara, M. 1946 On hydraulic jumps. In Proceedings of the Report of the Research Institute for Fluid Engineering, Kyusyu Imperial University, vol. 3 (2), pp. 1133.
Mathur, M., DasGupta, R., Selvi, N. R., John, N. S., Kulkarni, G. U. & Govindarajan, R. 2007 Gravity-free hydraulic jumps and metal femtoliter cups. Phys. Rev. Lett. 98 (16), 164502.
Lord Rayleigh 1914 On the theory of long waves and bores. Proc. R. Soc. Lond. A 90 (619), 324328.
Rojas, N., Argentina, M. & Tirapegui, E. 2013 A progressive correction to the circular hydraulic jump scaling. Phys. Fluids 25 (4), 042105.
Sun, N., Shi, L., Lu, F., Xie, S. & Zheng, L. 2014 Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions. Soft Matt. 10 (30), 54635471.
Tani, I. 1949 Water jump in the boundary layer. J. Phys. Soc. Japan 4 (4–6), 212215.
Vazquez, G., Alvarez, E. & Navaza, J. M. 1995 Surface tension of alcohol water + water from 20 to 50 °C. J. Chem. Engng Data 40 (3), 611614.
Wang, T., Davidson, J. F. & Wilson, D. I. 2015 Flow patterns and cleaning behaviour of horizontal liquid jets impinging on angled walls. Food Bioprod. Process. 93, 333342.
Watson, E. J. 1964 The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20 (3), 481499.
Wilson, D. I., Le, B. L., Dao, H. D. A., Lai, K. Y., Morison, K. R. & Davidson, J. F. 2012 Surface flow and drainage films created by horizontal impinging liquid jets. Chem. Engng Sci. 68 (1), 449460.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Bhagat et al. supplementary movie 1
Hydraulic jump in water propanol solution

 Video (8.9 MB)
8.9 MB

Bhagat et al. supplementary movie 2
) Formation of a hydraulic jump due to vertical impingement of a liquid jet on a horizontal surface

 Video (6.1 MB)
6.1 MB

Bhagat et al. supplementary movie 3
Change in jump radius by changing the surface tension

 Video (4.3 MB)
4.3 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed