Skip to main content Accesibility Help
×
×
Home

Pearling instability of a cylindrical vesicle

  • G. Boedec (a1), M. Jaeger (a2) and M. Leonetti (a1)
Abstract

A cylindrical vesicle under tension can undergo a pearling instability, characterized by the growth of a sinusoidal perturbation which evolves towards a collection of quasi-spherical bulbs connected by thin tethers, like pearls on a necklace. This is reminiscent of the well-known Rayleigh–Plateau instability, where surface tension drives the amplification of sinusoidal perturbations of a cylinder of fluid. We calculate the growth rate of perturbations for a cylindrical vesicle under tension, considering the effect of both inner and outer fluids, with different viscosities. We show that this situation differs strongly from the classical Rayleigh–Plateau case in the sense that, first, the tension must be above a critical value for the instability to develop and, second, even in the strong tension limit, the surface preservation constraint imposed by the presence of the membrane leads to a different asymptotic behaviour. The results differ from previous studies on pearling due to the consideration of variations of tension, which are shown to enhance the pearling instability growth rate, and lower the wavenumber of the fastest growing mode.

Copyright
Corresponding author
Email address for correspondence: boedec@irphe.univ-mrs.fr
References
Hide All
Abramowitz, M. & Stegun, I. A.(ed.) 1972 In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Dover Publications.
Amarouchene, Y., Bonn, D., Meunier, J. & Kellay, H. 2001 Inhibition of the finite-time singularity during droplet fission of a polymeric fluid. Phys. Rev. Lett. 86, 35583561.
Ardekani, A. M., Sharma, V. & McKinley, G. H. 2010 Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets. J. Fluid Mech. 665, 4656.
Bar-Ziv, R. & Moses, E. 1994 Instability and ‘pearling’ states produced in tubular membranes by competition of curvature and tension. Phys. Rev. Lett. 73, 13921395.
Bar-Ziv, R., Moses, E. & Nelson, P. 1998 Dynamic excitations in membranes induced by optical tweezers. Biophys. J. 75 (1), 294320.
Bar-Ziv, R., Tlusty, T. & Moses, E. 1997 Critical dynamics in the pearling instability of membranes. Phys. Rev. Lett. 79, 11581161.
Bar-Ziv, R., Tlusty, T., Moses, E., Safran, S. A. & Bershadsky, A. 1999 Pearling in cells: a clue to understanding cell shape. Proc. Natl Acad. Sci. 96 (18), 1014010145.
Bhat, P. P., Appathurai, S., Harris, M. T., Pasquali, M., McKinley, G. H. & Basaran, O. A. 2010 Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat. Phys. 6, 625631.
Boedec, G., Jaeger, M. & Leonetti, M. 2013 Sedimentation-induced tether on a settling vesicle. Phys. Rev. E 88, 010702.
Campelo, F. & Hernández-Machado, A. 2007 Model for curvature-driven pearling instability in membranes. Phys. Rev. Lett. 99, 088101.
Chaïeb, S. & Rica, S. 1998 Spontaneous curvature-induced pearling instability. Phys. Rev. E 58, 77337737.
Clasen, C., Eggers, J., Fontelos, M. A., Li, J. & McKinley, G. H. 2006 The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.
Dimova, R., Aranda, S., Bezlyepkina, N., Nikolov, V., Riske, K. A. & Lipowsky, R. 2006 A practical guide to giant vesicles. probing the membrane nanoregime via optical microscopy. J. Phys.: Condens. Matter 18 (28), S1151.
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.
Evans, E., Bowman, H., Leung, A., Needham, D. & Tirrell, D. 1996 Biomembrane templates for nanoscale conduits and networks. Science 273 (5277), 933935.
Fygenson, D. K., Marko, J. F. & Libchaber, A. 1997 Mechanics of microtubule-based membrane extension. Phys. Rev. Lett. 79, 44974500.
Goldstein, R. E., Nelson, P., Powers, T. & Seifert, U. 1996 Front propagation in the pearling instability of tubular vesicles. J. Phys. II France 6, 767796.
Goveas, J. L., Milner, S. T. & Russel, W. B. 1997 Late stages of the ‘pearling’ instability in lipid bilayers. J. Phys. II France 7 (9), 11851204.
Granek, R. & Olami, Z. 1995 Dynamics of Rayleigh-like instability induced by laser tweezers in tubular vesicles of self-assembled membranes. J. Phys. II France 5 (9), 13491370.
Gurin, K. L., Lebedev, V. V. & Muratov, A. A. 1996 Dynamic instability of a membrane tube. J. Expl Theor. Phys. 83 (2), 321326.
Hansen, S., Peters, G. W. M. & Meijer, H. E. H. 1999 The effect of surfactant on the stability of a fluid filament embedded in a viscous fluid. J. Fluid Mech. 382, 331349.
Kantsler, V., Segre, E. & Steinberg, V. 2008 Critical dynamics of vesicle stretching transition in elongational flow. Phys. Rev. Lett. 101, 048101.
Ménager, C., Meyer, M., Cabuil, V., Cebers, A., Bacri, J. -C. & Perzynski, R. 2002 Magnetic phospholipid tubes connected to magnetoliposomes: pearling instability induced by a magnetic field. Eur. Phys. J. E 7 (4), 325337.
Nelson, P., Powers, T. & Seifert, U. 1995 Dynamical theory of the pearling instability in cylindrical vesicles. Phys. Rev. Lett. 74, 33843387.
Oliveira, M. S. N. & McKinley, G. H. 2005 Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Phys. Fluids 17 (7), 071704.
Olmsted, P. D. & MacIntosh, F. C. 1997 Instability and front propagation in laser-tweezed lipid bilayer tubules. J. Phys. II France 7 (1), 139156.
Palierne, J. F & Lequeux, F. 1991 Sausage instability of a thread in a matrix; linear theory for viscoelastic fluids and interface. J. Non-Newtonian Fluid Mech. 40 (3), 289306.
Plateau, J. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars.
Powers, T. R. 2010 Dynamics of filaments and membranes in a viscous fluid. Rev. Mod. Phys. 82, 16071631.
Powers, T. R. & Goldstein, R. E. 1997 Pearling and pinching: propagation of Rayleigh instabilities. Phys. Rev. Lett. 78, 25552558.
Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. s1–10 (1), 413.
Rayleigh, L. 1892a XIX. On the instability of cylindrical fluid surfaces. Phil. Mag. Ser. 5 34 (207), 177180.
Rayleigh, L. 1892b XVI. On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag. Ser. 5 34 (207), 145154.
Sanborn, J., Oglecka, K., Kraut, R. S. & Parikh, A. N. 2013 Transient pearling and vesiculation of membrane tubes under osmotic gradients. Faraday Discuss. 161, 167176.
Timmermans, M.-L. E. & Lister, J. R. 2002 The effect of surfactant on the stability of a liquid thread. J. Fluid Mech. 459, 289306.
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150 (870), 322337.
Tsafrir, I., Sagi, D., Arzi, T., Guedeau-Boudeville, M.-A., Frette, V., Kandel, D. & Stavans, J. 2001 Pearling instabilities of membrane tubes with anchored polymers. Phys. Rev. Lett. 86, 11381141.
Vlahovska, P., Podgorski, T. & Misbah, C. 2009 Vesicles and red blood cells in flow: from individual dynamics to rheology. C. R. Phys. 10 (8), 775789.
Whitaker, S. 1976 Studies of the drop-weight method for surfactant solutions: III. Drop stability, the effect of surfactants on the stability of a column of liquid. J. Colloid Interface Sci. 54 (2), 231248.
Yanagisawa, M., Imai, M. & Taniguchi, T. 2008 Shape deformation of ternary vesicles coupled with phase separation. Phys. Rev. Lett. 100, 148102.
Zhao, H. & Shaqfeh, E. S. G. 2013 The shape stability of a lipid vesicle in a uniaxial extensional flow. J. Fluid Mechan. 719, 345361.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed