Skip to main content Accessibility help

Regimes during liquid drop impact on a liquid pool

  • Bahni Ray (a1), Gautam Biswas (a2) and Ashutosh Sharma (a3)

Water drops falling on a deep pool can either coalesce to form a vortex ring or splash, depending on the impact conditions. The transition between coalescence and splashing proceeds via a number of intermediate steps, such as thick and thin jet formation and gas-bubble entrapment. We perform simulations to determine the conditions under which bubble entrapment and jet formation occur. A regime map is established for Weber numbers ranging from 50 to 300 and Froude numbers from 25 to 600. Vortex ring formation is seen for all of the regimes; it is greater for the coalescence regime and less in the case of the thin jet regime.

Corresponding author
Email address for correspondence:
Hide All
Adrian, R. J., Christensen, K. T. & Liu, Z. C. 2000 Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275290.
Berberovic, E., van Hinsberg, N. P., Jakirlic, S., Roisman, I. V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79, 036306,1–15.
Bisighini, A. & Cossali, G. E. 2010 Crater evolution after the impact of a drop onto a semi-infinite liquid target. Phys. Rev. E 82, 036319,1–11.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.
Chang, Y. C., Hou, T. Y., Merriman, B. & Osher, S. 1996 A level-set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449464.
Chapman, D. S. & Critchlow, P. R. 1967 Formation of vortex rings from falling drops. J. Fluid Mech. 29, 177185.
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three dimensional flow fields. Phys. Fluids A2, 765777.
Cole, D. E.2007 Splashing morphology of liquid–liquid impacts. PhD thesis, James Cook Univeristy.
Cresswell, R. W. & Morton, B. R. 1995 Drop-formed vortex rings – the generation of vorticity. Phys. Fluids 7, 13631370.
Deng, Q., Anilkumar, A. V. & Wang, T. G. 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.
Dooley, B. S., Warncke, A. E., Gharib, M. & Tryggvason, G. 1997 Vortex ring generation due to the coalescence of a water drop at a free surface. Phys. Fluids 22, 369374.
Durst, F. 1996 Penetration length and diameter development of vortex rings generated by impacting water drops. Exp. Fluids 21, 110117.
Elmore, P. A., Pumphrey, H. C. & Crum, L. A.1989 Further studies of the underwater noise produced by rainfall. PhD thesis, University of Mississippi.
Engel, O. G. 1966 Crater depth in fluid impacts. J. Appl. Phys. 37, 17981808.
Engel, O. G. 1967 Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts. J. Appl. Phys. 38, 39353940.
Esmailizadeh, L. & Mesler, R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110, 561574.
Franz, J. 1959 Splashes as sources of sound in liquids. J. Acoust. Soc. Am. 31, 10801096.
Hsiao, M., Lichter, S. & Quintero, L. G. 1988 The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31, 35603562.
Liow, J. L. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.
Longuet-Higgins, M. S. 1990 An analytic model of sound production by rain-drops. J. Fluid Mech. 214, 395410.
Medwin, H., Nystuen, J. A., Jacobus, P. W., Ostwald, L. H. & Snyder, D. E. 1992 The anatomy of underwater rain noise. J. Acoust. Soc. Am. 92, 16131623.
Morton, D., Rudman, M. & Liow, J. L. 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12, 747763.
Nystuen, J. A. 1986 Rainfall measurements using underwater ambient noise. J. Acoust. Soc. Am. 79, 972982.
Oguz, H. N. & Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143179.
Oguz, H. N. & Prosperetti, A. 1991 Numerical calculations of the underwater noise of rain. J. Fluid Mech. 228, 417442.
Peck, B. & Sigurdson, L. 1994 The three-dimensional vortex structure of an impacting water drop. Phys. Fluids 6 (2), 564576.
Prosperetti, A., Pumphrey, H. C. & Crum, L. A. 1989 The underwater noise of rain. J. Geophys. Res. 94, 32553259.
Pumphrey, H. C., Crum, L. A. & Bjørnø, L. 1989 Underwater sound produced by individual drop impacts and rainfall. J. Acoust. Soc. Am. 85, 15181526.
Pumphrey, H. C. & Elmore, P. A. 1990 The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539567.
Ray, B., Biswas, G. & Sharma, A. 2010 Generation of secondary droplets in coalescence of a drop at a liquid/liquid interface. J. Fluid Mech. 655, 72104.
Ray, B., Biswas, G. & Sharma, A. 2012 Bubble pinch-off and scaling during liquid drop impact on liquid pool. Phys. Fluids 24, 080108,1–11.
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.
Rodriguez, F. & Mesler, R. 1988 The penetration of drop-formed vortex rings into pools of liquid. J. Colloid Interface Sci. 121 (1), 121129.
Santini, M., Fest-Santini, S. & Cossali, G. E. 2013 LDV characterization and visualization of the liquid velocity field underneath an impacting drop in isothermal conditions. Exp. Fluids 54, 15931608.
Shankar, P. N. & Kumar, M. 1995 Vortex rings generated by drops just coalescing with a pool. Phys. Fluids 7 (4), 737746.
Sigler, J. & Mesler, R. 1989 The behavior of the gas film formed upon drop impact with a liquid surface. J. Colloid Interface Sci. 134, 459474.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.
Thoroddsen, S. T., Thoraval, M. J., Takehara, K. & Etoh, T. G. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.
Tuan, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3,1–11.
Zhou, J., Adrian, R. J. & Balachandar, S. 1996 Autogeneration of near-wall vortical structures in channel. Phys. Fluids 8, 288290.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanism for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353359.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed