Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 15
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Senft, Laurel E. and Stewart, Sarah T. 2009. Dynamic fault weakening and the formation of large impact craters. Earth and Planetary Science Letters, Vol. 287, Issue. 3-4, p. 471.

    SUN, JIN and SUNDARESAN, SANKARAN 2011. A constitutive model with microstructure evolution for flow of rate-independent granular materials. Journal of Fluid Mechanics, Vol. 682, p. 590.

    Krimer, Dmitry O. Mahle, Stefan and Liu, Mario 2012. Dip of the granular shear stress. Physical Review E, Vol. 86, Issue. 6,

    Lu, Kevin Brodsky, E. E. and Kavehpour, H. P. 2008. A thermodynamic unification of jamming. Nature Physics, Vol. 4, Issue. 5, p. 404.

    Dalton, F Petri, A and Pontuale, G 2010. A random neighbour model for yielding. Journal of Statistical Mechanics: Theory and Experiment, Vol. 2010, Issue. 03, p. P03011.

    Kirkpatrick, J. D. and Shipton, Z. K. 2009. Geologic evidence for multiple slip weakening mechanisms during seismic slip in crystalline rock. Journal of Geophysical Research, Vol. 114, Issue. B12,

    Sagy, Amir and Brodsky, Emily E. 2009. Geometric and rheological asperities in an exposed fault zone. Journal of Geophysical Research, Vol. 114, Issue. B2,

    Higashi, Naoya and Sumita, Ikuro 2009. Experiments on granular rheology: Effects of particle size and fluid viscosity. Journal of Geophysical Research, Vol. 114, Issue. B4,

    Franklin, Scott and Shattuck, Mark 2015. Handbook of Granular Materials.

    Gutam, Kamala Jyotsna Mehandia, Vishwajeet and Nott, Prabhu R. 2013. Rheometry of granular materials in cylindrical Couette cells: Anomalous stress caused by gravity and shear. Physics of Fluids, Vol. 25, Issue. 7, p. 070602.

    Meneghini, F. Di Toro, G. Rowe, C.D. Moore, J.C. Tsutsumi, A. and Yamaguchi, A. 2010. Record of mega-earthquakes in subduction thrusts: The black fault rocks of Pasagshak Point (Kodiak Island, Alaska). Geological Society of America Bulletin, Vol. 122, Issue. 7-8, p. 1280.

    Lieou, Charles K. C. Elbanna, Ahmed E. Langer, J. S. and Carlson, J. M. 2014. Shear flow of angular grains: Acoustic effects and nonmonotonic rate dependence of volume. Physical Review E, Vol. 90, Issue. 3,

    van der Elst, Nicholas J. Brodsky, Emily E. Le Bas, Pierre-Yves and Johnson, Paul A. 2012. Auto-acoustic compaction in steady shear flows: Experimental evidence for suppression of shear dilatancy by internal acoustic vibration. Journal of Geophysical Research: Solid Earth, Vol. 117, Issue. B9, p. n/a.

    Leoni, Fabio Baldassarri, Andrea Dalton, Fergal Petri, Alberto Pontuale, Giorgio and Zapperi, Stefano 2011. Friction memory in the stick-slip of a sheared granular bed. Journal of Non-Crystalline Solids, Vol. 357, Issue. 2, p. 749.

    Lyakhovsky, Vladimir Sagy, Amir Boneh, Yuval and Reches, Ze’ev 2014. Fault Wear by Damage Evolution During Steady-State Slip. Pure and Applied Geophysics, Vol. 171, Issue. 11, p. 3143.

  • Journal of Fluid Mechanics, Volume 587
  • September 2007, pp. 347-372

Shear-weakening of the transitional regime for granular flow

  • KEVIN LU (a1), E. E. BRODSKY (a2) and H. P. KAVEHPOUR (a1)
  • DOI:
  • Published online: 25 September 2007

This paper experimentally investigates the rheology of dense granular flow through itssolid-like to fluid-like transition. Between the well-established flow regimes – quasi-static and grain-inertial – the physical description of the transition remains elusive. Our experiment uses a top-rotating torsional shear cell capable of ± 1 μm accuracy in height and 5 decades (10−3 − 100 rad s−1) in rotation rate. The data on beach sand shows that shear and normal stresses exhibit an inverse rate-dependence under a controlledvolume environment in the transitional regime, while in the limiting regimes the results are in agreement with previous work. Theshear-weakening stresses illustrate a previouslyunknown ‘dip’ with increasingshear rate. Under a controlled-pressure environment, however, the shear-compacting volume-fraction ‘peaks’ with increasing shear-rate. We combine these results from both configurations to infer a constitutive law based on a rate-invariant granular fluid compressibility. The formulation provides an equation-of-state for dynamic granular systems, with state variables of pressure, strain rate and free-volume-fraction. Fitting parameters from independent constant-volume and constant-pressure data shows good agreement in validating our model. Moreover, the degree of grain jaggedness is essential to the rate-dependence within the transitional regime. The results on the solid–fluid transitionmay elucidate the evolution of granular flow anisotropies.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E. Aharonov & D. Sparks 2004 Stick-slip motion in simulated granular layers. J. Geophys. Res.-Solid Earth, 109.

R. A. Bagnold 1954 Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.

G. Bossis , Y. Grasselli & O. Volkova 2004 Granular rheology in zero gravity. J. Phys. Cond. Matter. 16, 32793287.

C. S. Campbell 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22, 5792.

C. S. Campbell 2006 Granular material flows – an overview. Powder Technol. 162, 208229.

M. E. Cates , J. P. Wittmer , J. P. Bouchaud & P. Claudin 1999 Jamming and static stress transmission in granular materials. Chaos. 9, 511522.

D. C. H. Cheng & R. A. Richmond 1978 Some observations on rheological behavior of dense suspensions. Rheol. Acta. 17, 446453.

E. I. Corwin , H. M. Jaeger & S. R. Nagel 2005 Structural signature of jamming in granular media. Nature. 435, 10751078.

F. Dalton , F. Farrelly , A. Petri , L. Pietronero , L. Pitolli & G. Pontuale 2005 Shear stress fluctuations in the granular liquid and solid phases. Phys. Rev. Lett. 95 (13).

S. Dartevelle 2004 Numerical modeling of geophysical granular flows: 1. a comprehensive approach to granular rheologies and geophysical multiphase flows. Geochem. Geophys. Geosyst. 5.

T. G. Drake 1990 Structural features in granular flows. J. Geophys. Res. 95 (B6), 86818696.

S. C. Hendy 2005 Towards a theory of granular plasticity. J. Engng Math. 52, 137146.

D. W. Howell , R. P. Behringer & C. T. Veje 1999 Fluctuations in granular media. Chaos. 9, 559572.

S. S. Hsiau & Y. M. Shieh 2000 Effect of solid fraction on fluctuations and self-diffusion of sheared granular flows. Chem. Engng Sci. 55, 19691979.

H. M. Jaeger , S. R. Nagel & R. P. Behringer 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 12591273.

P. Jop , Y. Forterre & O. Pouliquen 2006 A constitutive law for dense granular flows. Nature. 441, 727730.

A. Karion & M. L. Hunt 1999 Energy dissipation in sheared granular flows. Trans. ASME C: J. Heat Transfer. 121, 984991.

H. P. Kavehpour & G. H. McKinley 2004 Tribo-rheometry: from gap-dependent rheology to tribology. Tribol. Lett. 17, 327335.

J. F. Klausner , D. M. Chen & R. W. Mei 2000 Experimental investigation of cohesive powder rheology. Powder Technol. 112, 94101.

A. J. Liu & S. R. Nagel 1998 Nonlinear dynamics – jamming is not just cool any more. Nature. 396, 2122.

T. S. Majmudar & R. P. Behringer 2005 Contact force measurements and stress-induced anisotropy in granular materials. Nature. 435, 10791082.

H. A. Makse , S. Havlin , P. R. King & H. E. Stanley 1997 Spontaneous stratification in granular mixtures. Nature. 386, 379382.

R. M. Nedderman 1992 Static and Kinematics of Granular Materials, 1st edn. Cambridge University Press.

E. R. Nowak , J. B. Knight , M. L. Povinelli , H. M. Jaeger & S. R. Nagel 1997 Reversibility and irreversibility in the packing of vibrated granular material. Powder Technol. 94, 7983.

C. S. O'Hern , S. A. Langer , A. J. Liu & S. R. Nagel 2001 Force distributions near jamming and glass transitions. Phys. Rev. Lett. 86, 111114.

G. Y. Onoda & E. G. Liniger 1990 Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 27272730.

S. Ostojic , E. Somfai & B. Nienhuis 2006 Scale invariance and universality of force networks in static granular matter. Nature. 439, 828830.

S. B. Savage 1984 The mechanics of rapid granular flows. Adv Appl. Mech. 24, 289366.

S. B. Savage , R. M. Nedderman , U. Tuzun & G. T. Houlsby 1983 The flow of granular-materials3. Rapid shear flows. Chem. Engng Sci. 38, 189195.

W. G. Sawyer & J. A. Tichy 2001 Lubrication with granular flow: continuum theory, particle simulations, comparison with experiment. Trans. ASME J. Tribol. 123, 777784.

T. Shinbrot 2004 Granular materials – the brazil nut effect – in reverse. Nature. 429, 352353.

G. I. Tardos , M. I. Khan & D. G. Schaeffer 1998 Forces on a slowly rotating, rough cylinder in a couette device containing a dry, frictional powder. Phys. Fluids. 10, 335341.

G. I. Tardos , S. McNamara & I. Talu 2003 Slow and intermediate flow of a frictional bulk powder in the Couette geometry. Powder Technol. 131, 2339.

U. Tuzun , G. T. Houlsby , R. M. Nedderman & S. B. Savage 1982 The flow of granular-materials2. Velocity distributions in slow flow. Chem. Engng Sci. 37, 16911709.

W. M. Visscher & M. Bolsterl 1972 Random packing of equal and unequal spheres in 2 and 3 dimensions. Nature. 239, 504508.

A. B. Yu , R. P. Zou & N. Standish 1996 Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures. Indust. Engng Chem. Res. 35, 37303741.

R. P. Zou & A. B. Yu 1996 Evaluation of the packing characteristics of mono-sized non-spherical particles. Powder Technol. 88, 7179.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *