Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 7
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Travnikov, Vadim Crumeyrolle, Olivier and Mutabazi, Innocent 2016. Influence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric fluid under microgravity. Acta Astronautica, Vol. 129, p. 88.

    Gastine, Thomas Wicht, Johannes and Aurnou, Jonathan M. 2015. Turbulent Rayleigh–Bénard convection in spherical shells. Journal of Fluid Mechanics, Vol. 778, p. 721.

    Futterer, Birgit and Egbers, Christoph 2014. Der innere Kreislauf der Erde. Physik in unserer Zeit, Vol. 45, Issue. 3, p. 126.

    Travnikov, V. Crumeyrolle, O. and Mutabazi, I. 2015. Numerical investigation of the heat transfer in cylindrical annulus with a dielectric fluid under microgravity. Physics of Fluids, Vol. 27, Issue. 5, p. 054103.

    Davaille, A. and Limare, A. 2015. Treatise on Geophysics.

    Futterer, B. Dahley, N. and Egbers, C. 2016. Thermal electro-hydrodynamic heat transfer augmentation in vertical annuli by the use of dielectrophoretic forces through a.c. electric field. International Journal of Heat and Mass Transfer, Vol. 93, p. 144.

    Yoshikawa, H. N. Meyer, A. Crumeyrolle, O. and Mutabazi, I. 2015. Linear stability of a circular Couette flow under a radial thermoelectric body force. Physical Review E, Vol. 91, Issue. 3,

  • Journal of Fluid Mechanics, Volume 735
  • November 2013, pp. 647-683

Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity

  • B. Futterer (a1) (a2), A. Krebs (a1), A.-C. Plesa (a3), F. Zaussinger (a1), R. Hollerbach (a4), D. Breuer (a3) and C. Egbers (a1)
  • DOI:
  • Published online: 29 October 2013

We introduce, in spherical geometry, experiments on electro-hydrodynamic driven Rayleigh–Bénard convection that have been performed for both temperature-independent (‘GeoFlow I’) and temperature-dependent fluid viscosity properties (‘GeoFlow II’) with a measured viscosity contrast up to 1.5. To set up a self-gravitating force field, we use a high-voltage potential between the inner and outer boundaries and a dielectric insulating liquid; the experiments were performed under microgravity conditions on the International Space Station. We further run numerical simulations in three-dimensional spherical geometry to reproduce the results obtained in the ‘GeoFlow’ experiments. We use Wollaston prism shearing interferometry for flow visualization – an optical method producing fringe pattern images. The flow patterns differ between our two experiments. In ‘GeoFlow I’, we see a sheet-like thermal flow. In this case convection patterns have been successfully reproduced by three-dimensional numerical simulations using two different and independently developed codes. In contrast, in ‘GeoFlow II’, we obtain plume-like structures. Interestingly, numerical simulations do not yield this type of solution for the low viscosity contrast realized in the experiment. However, using a viscosity contrast of two orders of magnitude or higher, we can reproduce the patterns obtained in the ‘GeoFlow II’ experiment, from which we conclude that nonlinear effects shift the effective viscosity ratio.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. Androvandi , A. Davaille , A. Limarea , A. Foucquiera & C. Marais 2011 At least three scales of convection in a mantle with strongly temperature-dependent viscosity. Phys. Earth Planet. Inter. 188, 132141.

A. Bahloul , I. Mutabazi & A. Ambari 2000 Codimension 2 points in the flow inside a cylindrical annulus with a radial temperature gradient. Eur. Phys. J., Appl. Phys. 9, 253264.

J. P. Baumgardner 1985 Three-dimensional treatment of convective flow in the Earth’s mantle. J. Stat. Phys. 39, 501511.

D. Bercovici , G. Schubert & G. A. Glatzmaier 1989a Three-dimensional spherical models of convection in the Earth’s mantle. Science 244, 950955.

D. Bercovici , G. Schubert & G. A. Glatzmaier 1991 Modal growth and coupling in three-dimensional spherical convection. Geophys. Astrophys. Fluid Dyn. 61, 149159.

D. Bercovici , G. Schubert & G. A. Glatzmaier 1992 Three-dimensional convection of an infinite-Prandtl-number compressible fluid in a basally heated spherical shell. J. Fluid Mech. 239, 683719.

D. Bercovici , G. Schubert , G. A. Glatzmaier & A. Zebib 1989b Three-dimensional thermal convection in a spherical shell. J. Fluid Mech. 206, 75104.

J. R. Booker 1976 Thermal convection with strongly temperature-dependent viscosity. J. Fluid Mech. 76, 741754.

M. Breuer , S. Wessling , J. Schmalzl & U. Hansen 2004 Effects of inertia in Rayleigh–Bénard convection. Phys. Rev. E 69, 026302.

F. H. Busse 1975 Patterns of convection in spherical shells. J. Fluid Mech. 72, 6785.

F. H. Busse 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 19301967.

F. H. Busse 2002 Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14, 13011313.

F. H. Busse & H. Frick 1985 Square-pattern convection in fluids with strongly temperature-dependent viscosity. J. Fluid Mech. 150, 451465.

U. Christensen & H. Harder 1991 Three-dimensional convection with variable viscosity. Geophys. J. Intl 104, 213226.

M. Cullen 2007 Modelling atmospheric flows. Acta Numerica 16, 67154.

A. Davaille & C. Jaupart 1994 Onset of thermal convection in fluids with temperature-dependent viscosity: application to the oceanic mantle. J. Geophys. Res. 99, 19 84319 866.

A. Davaille & A. Limare 2009 Laboratory studies of mantle convection. In Mantle Dynamics (ed. G. Schubert & D. Bercovici), Treatise on Geophysics, 7, pp. 89165. Elsevier.

F. Dubois , L. Johannes , O. Dupont , J. L. Dewandel & J. C. Legros 1999 An integrated optical set-up for fluid physics experiments under microgravity conditions. Meas. Sci. Technol. 10, 934945.

C. Egbers , W. Beyer , A. Bonhage , R. Hollerbach & P. Beltrame 2003 The GEOFLOW-experiment on ISS (Part I): Experimental preparation and design. Adv. Space Res. 32, 171180.

F. Feudel , K. Bergemann , L. Tuckerman , C. Egbers , B. Futterer , M. Gellert & R. Hollerbach 2011 Convection patterns in a spherical fluid shell. Phys. Rev. E 83, 046304.

B. Futterer , A. Brucks , R. Hollerbach & C. Egbers 2007 Thermal blob convection in spherical shells. Intl J. Heat Mass Transfer 50, 40794088.

B. Futterer , N. Dahley , S. Koch , N. Scurtu & C. Egbers 2012 From isoviscous convective experiment ‘GeoFlow I’ to temperature-dependent viscosity in ‘GeoFlow II’ – Fluid physics experiments on-board ISS for the capture of convection phenomena in Earth’s outer core and mantle. Acta Astronaut. 71, 1119.

B. Futterer , C. Egbers , N. Dahley , S. Koch & L. Jehring 2010 First identification of sub- and supercritical convection patterns from GeoFlow, the geophysical flow simulation experiment integrated in Fluid Science Laboratory. Acta Astronaut. 66, 193200.

U. Hansen & D. A. Yuen 1993 High Rayleigh number regime of temperature-dependent viscosity convection and the Earth’s nearly thermal history. Geophys. Res. Lett. 20, 21912194.

U. Hansen & D. A. Yuen 1994 Effects of depth-dependent thermal expansivity on the interaction of thermal chemical plumes with a compositional boundary. Phys. Earth Planet. Inter. 86, 205221.

J. E. Hart , G. A. Glatzmaier & J. Toomre 1986 Space-Laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech. 173, 519544.

F. Hébert , R. Hufschmid , J. Scheel & G. Ahlers 2010 Onset of Rayleigh–Bénard convection in cylindrical containers. Phys. Rev. E 81, 046318.

R. Hollerbach 2000 A spectral solution of the magneto-convection equations in spherical geometry. Intl J. Numer. Meth. Fluids 32, 773797.

G. A. Houseman 1990 The thermal structure of mantle plumes: axisymmetric or triple junction?. Geophys. J. Intl 102, 1524.

C. Hüttig & D. Breuer 2011 Regime classification and planform scaling for internally heated mantle convection. Phys. Earth Planet. Inter. 186, 111124.

C. Hüttig & K. Stemmer 2008a Finite volume discretization for dynamic viscosities on Voronoi grids. Phys. Earth Planet. Inter. 171, 137146.

C. Hüttig & K. Stemmer 2008b The spiral grid: a new approach to discretize the sphere and its application to mantle convection. Geochem. Geophys. Geosyst. 9, Q02018.

T. B. Jones 1979 Electrohydrodynamically enhanced heat transfer in liquids – a review. Adv. Heat Transfer 14, 107148.

M. Kameyama & M. Ogawa 2000 Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box. Earth Planet. Sci. Lett. 180, 355367.

L. H. Kellogg & S. D. King 1997 The effect of temperature dependent viscosity on the structure of new plumes in the mantle: results of a finite element model in a spherical, axisymmetric shell. Earth Planet. Sci. Lett. 148, 1326.

L. D. Landau , E. M. Lifshitz & L. D. Pitaevskii 1984 Course of Theoretical Physics – Electrodynamics of Continuous Media. Butterworth-Heinemann.

S. V. Malik , H. N. Yoshikawa , O. Crumeyrolle & I. Mutabazi 2012 Thermo-electro-hydrodynamic instabilities in a dielectric liquid under microgravity. Acta Astronaut. 81, 563569.

S. Morris & D. R. Canright 1984 A boundary-layer analysis of Bénard convection with strongly temperature-dependent viscosity. Earth Planet. Sci. Lett. 36, 355377.

H. C. Nataf & F. M. Richter 1982 Convection experiments in fluids with highly temperature-dependent viscosity and the thermal evolution of the planets. Phys. Earth Planet. Inter. 29, 320329.

M. Ogawa 2008 Mantle convection: a review. Fluid Dyn. Res. 40, 379398.

M. Ogawa , G. Schubert & A. Zebib 1991 Numerical simulations of three-dimensioanl thermal convection a fluid with strongly temperature-dependent viscosity. J. Fluid Mech. 233, 299328.

J. T. Ratcliff , G. Schubert & A. Zebib 1996 Effects of temperature-dependent viscosity on thermal convection in a spherical shell. Physica D 97, 242252.

J. T. Ratcliff , P. J. Tackley , G. Schubert & A. Zebib 1997 Transitions in thermal convection with strongly variable viscosity. Phys. Earth Planet. Inter. 102, 201212.

F. M. Richter , H. C. Nataf & S. F. Daly 1983 Heat transfer and horizontally averaged temperature of convection with large viscosity variations. J. Fluid Mech. 129, 173192.

J. Schmalzl , M. Breuer & U. Hansen 2002 The influence of the Prandtl number on the style of vigorous thermal convection. Geophys. Astrophys. Fluid Dyn. 96, 381403.

G. Schubert , G. A. Glatzmaier & B. Travis 1993 Steady, three-dimensional, internally heated convection. Phys. Fluids A 5, 19281932.

N. Scurtu , B. Futterer & C. Egbers 2010 Pulsating and travelling wave modes of natural convection in spherical shells. Phys. Fluids 22, 114108.

V. S. Solomatov 1995 Scaling of temperature and stress-dependent viscosity convection. Phys. Fluids 7, 266274.

K. Stemmer , H. Harder & U. Hansen 2006 A new method to simulate convection with strongly temperature- and pressure-dependent vicosity in a spherical shell: applications to the Earth’s mantle. Phys. Earth Planet. Inter. 157, 223249.

K. C. Stengel , D. S. Oliver & J. R. Booker 1982 Onset of convection in a variable-viscosity fluid. J. Fluid Mech. 120, 411431.

K. Sugiyama , E. Calzavarini , S. Grossmann & D. Lohse 2007 Non-Oberbeck–Boussinesq effects in two-dimensional Rayleigh–Bénard convection in glycerol. Europhys. Lett. 80, 34002.

P. J. Tackley 1993 Effects of strongly temperature-dependent viscosity on time-dependent three-dimensional models of mantle convection. Geophys. Res. Lett. 20, 21872190.

P. J. Tackley 1996 Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res. 101, 33113332.

V. Travnikov , C. Egbers & R. Hollerbach 2003 The GEOFLOW-experiment on ISS (Part II): numerical simulation. Adv. Space Res. 32, 181189.

D. B. White 1988 The planforms and onset of convection with a temperature-dependent viscosity. J. Fluid Mech. 191, 247286.

I. M. Yavorskaya , N. I. Fomina & Y. N. Balyaev 1984 A simulation of central symmetry convection in microgravity conditions. Acta Astronaut. 11, 179183.

H. N. Yoshikawa , O. Crumeyrolle & I. Mutabazi 2013 Dielectrophoretic force-driven thermal convection in annular geometry. Phys. Fluids 25, 024106.

J. Zhang , S. Childress & A. Libchaber 1997 Non-Boussinesq effect: thermal convection with broken symmetry. Phys. Fluids 9, 10341042.

P. Zhang , X. Liao & K. Zhang 2002 Patterns in spherical Rayleigh–Bénard convection: a giant spiral roll and its dislocations. Phys. Rev. E 66, 055203.

S. Zhong , A. McNamara , E. Tan , L. Moresi & M. Gurnis 2008 A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017.

S. Zhong , M. T. Zuber , L. Moresi & M. Gurnis 2000 Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105 (B5), 11 06311 082.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *