Skip to main content

Size segregation of intruders in perpetual granular avalanches

  • Benjy Marks (a1) (a2), Jon Alm Eriksen (a2), Guillaume Dumazer (a3), Bjørnar Sandnes (a4) and Knut Jørgen Måløy (a3)...

Granular flows such as landslides, debris flows and avalanches are systems of particles with a large range of particle sizes that typically segregate while flowing. The physical mechanisms responsible for this process, however, are still poorly understood, and there is no predictive framework for ascertaining the segregation behaviour of a given system of particles. Here, we provide experimental evidence of individual large intruder particles being attracted to a fixed point in a dry two-dimensional flow of particles of otherwise uniform size. A continuum theory is proposed which captures this effect using only a single fitting parameter that describes the rate of segregation, given knowledge of the bulk flow field. Predictions of the continuum theory are compared with the experimental findings, both for the typical location and velocity field of a range of intruder sizes. For large intruder particle sizes, the continuum model successfully predicts that a fixed point attractor will form, where intruders are drawn to a single location.

Corresponding author
Email address for correspondence:
Hide All
Baker J. L., Johnson C. G. & Gray J. M. N. T. 2016 Segregation-induced finger formation in granular free-surface flows. J. Fluid Mech. 809, 168212.
Bartelt P. & McArdell B. W. 2009 Granulometric investigations of snow avalanches. J. Glaciol. 55 (193), 829833.
Bedford A. & Drumheller D. S. 1983 Theories of immiscible and structured mixtures. Intl J. Engng Sci. 21 (8), 863960.
Branney M. J. & Kokelaar P. 1992 A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull. Volcanol. 54 (6), 504520.
Brown R. L. 1939 The fundamental principles of segregation. Inst. Fuel 13, 1519.
Dolgunin V. N. & Ukolov A. A. 1995 Segregation modeling of particle rapid gravity flow. Powder Technol. 83 (2), 95103.
Fan Y. & Hill K. M. 2011 Theory for shear-induced segregation of dense granular mixtures. New J. Phys. 13 (9), 095009.
Gajjar P., van der Vaart K., Thornton A. R., Johnson C. G., Ancey C. & Gray J. M. N. T. 2016 Asymmetric breaking size-segregation waves in dense granular free-surface flows. J. Fluid Mech. 794, 460505.
Gray J. M. N. T. & Ancey C. 2009 Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629, 387423.
Gray J. M. N. T. & Ancey C. 2011 Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535588.
Gray J. M. N. T. & Kokelaar B. P. 2010 Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech. 652, 105137.
Gray J. M. N. T. & Thornton A. R. 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. Lond. A 461 (2057), 14471473.
Guillard F., Forterre Y. & Pouliquen O. 2016 Scaling laws for segregation forces in dense sheared granular flows. J. Fluid Mech. 807, R1R11.
Hill K. M., Gilchrist J. F., Ottino J. M., Khakhar D. V. & McCarthy J. J. 1999a Mixing of granular materials: a test-bed dynamical system for pattern formation. Intl J. Bifurcation Chaos 9 (08), 14671484.
Hill K. M., Khakhar D. V., Gilchrist J. F., McCarthy J. J. & Ottino J. M. 1999b Segregation-driven organization in chaotic granular flows. Proc. Natl Acad. Sci. USA 96 (21), 1170111706.
Hill K. M. & Tan D. S. 2014 Segregation in dense sheared flows: gravity, temperature gradients, and stress partitioning. J. Fluid Mech. 756, 5488.
Hill K. M. & Zhang J. 2008 Kinematics of densely flowing granular mixtures. Phys. Rev. E 77, 061303.
Hong D. C., Quinn P. V. & Luding S. 2001 Reverse Brazil nut problem: competition between percolation and condensation. Phys. Rev. Lett. 86, 34233426.
Huerta D. A. & Ruiz-Suárez J. C. 2004 Vibration-induced granular segregation: a phenomenon driven by three mechanisms. Phys. Rev. Lett. 92 (11), 114301.
Iverson R. M. 2003 The debris-flow rheology myth. Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment 1, 303314.
Jenkins J. T. & Mancini F. 1987 Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks. Trans. ASME J. Appl. Mech. 54 (1), 2734.
Jenkins J. T. & Mancini F. 1989 Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1 (12), 20502057.
Jenkins J. T. & Yoon D. K. 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88 (19), 194301.
Johnson C. G., Kokelaar B. P., Iverson R. M., Logan M., LaHusen R. G. & Gray J. M. N. T. 2012 Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117, F01032.
Khakhar D. V., McCarthy J. J. & Ottino J. M. 1997 Radial segregation of granular mixtures in rotating cylinders. Phys. Fluids 9 (12), 36003614.
Knight J. B., Jaeger H. M. & Nagel S. R. 1993 Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70, 37283731.
Marks B. & Einav I. 2015 A mixture of crushing and segregation: the complexity of grainsize in natural granular flows. Geophys. Res. Lett. 42 (2), 274281.
Marks B., Rognon P. & Einav I. 2012 Grainsize dynamics of polydisperse granular segregation down inclined planes. J. Fluid Mech. 690, 499511.
Möbius M. E., Lauderdale B. E., Nagel S. R. & Jaeger H. M. 2001 Brazil-nut effect: size separation of granular particles. Nature 414 (6861), 270270.
Morland L. W. 1992 Flow of viscous fluids through a porous deformable matrix. Surv. Geophys. 13 (3), 209268.
Perng A. T. H., Capart H. & Chou H. T. 2006 Granular configurations, motions, and correlations in slow uniform flows driven by an inclined conveyor belt. Granul. Matt. 8 (1), 517.
Ramkrishna D. 2000 Population Balances: Theory and Applications to Particulate Systems in Engineering. Academic.
Savage S. B. & Lun C. K. K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.
Shadden S. C., Lekien F. & Marsden J. E. 2005 Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212 (3), 271304.
Staron L. & Phillips J. C. 2015 Stress partition and microstructure in size-segregating granular flows. Phys. Rev. E 92 (2), 022210.
Thielicke W. & Stamhuis E. J. 2014 Pivlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2 (1), e30.
Thomas N. 2000 Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E 62 (1), 961974.
Thornton A. R. & Gray J. M. N. T. 2008 Breaking size segregation waves and particle recirculation in granular avalanches. J. Fluid Mech. 596, 261284.
Tunuguntla D. R., Bokhove O. & Thornton A. R. 2014 A mixture theory for size and density segregation in shallow granular free-surface flows. J. Fluid Mech. 749, 99112.
Tunuguntla D. R., Weinhart T. & Thornton A. R. 2016 Comparing and contrasting size-based particle segregation models. Comput. Part. Mech. 119.
van der Vaart K., Gajjar P., Epely-Chauvin G., Andreini N., Gray J. M. N. T. & Ancey C. 2015 Underlying asymmetry within particle size segregation. Phys. Rev. Lett. 114 (23), 238001.
Voivret C. 2013 Cushioning effect in highly polydisperse granular media. In Powders and Grains 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media, vol. 1542, pp. 405408. AIP Publishing.
Weinhart T., Luding S., Thornton A. R., Yu A., Dong K., Yang R. & Luding S. 2013 From discrete particles to continuum fields in mixtures. In AIP Conference Proceedings, vol. 1542, pp. 12021205. AIP Publishing.
Williams J.-C. 1976 The segregation of particulate materials. A review. Powder Technol. 15 (2), 245251.
Woodhouse M. J., Thornton A. R., Johnson C. G., Kokelaar B. P. & Gray J. M. N. T. 2012 Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid Mech. 709, 543580.
Zhang L. M., Xu Y., Huang R. Q. & Chang D. S. 2011 Particle flow and segregation in a giant landslide event triggered by the 2008 Wenchuan earthquake, Sichuan, China. Nat. Hazards Earth Syst. Sci. 11 (4), 11531162.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title

Marks et al. supplementary movie
Video of two intruder particles flowing in a perpetual avalanche. Note that the large red particle tends to stay towards the right hand side, while the small blue particle explores the whole system.

 Video (522.7 MB)
522.7 MB


Full text views

Total number of HTML views: 5
Total number of PDF views: 108 *
Loading metrics...

Abstract views

Total abstract views: 299 *
Loading metrics...

* Views captured on Cambridge Core between 21st July 2017 - 21st January 2018. This data will be updated every 24 hours.