Skip to main content
×
×
Home

Spectral eddy viscosity of stratified turbulence

  • Sebastian Remmler (a1) and Stefan Hickel (a1)
Abstract

The spectral eddy viscosity (SEV) concept is a handy tool for the derivation of large-eddy simulation (LES) turbulence models and for the evaluation of their performance in predicting the spectral energy transfer. We compute this quantity by filtering and truncating fully resolved turbulence data from direct numerical simulations (DNS) of neutrally and stably stratified homogeneous turbulence. The results qualitatively confirm the plateau–cusp shape, which is often assumed to be universal, but show a strong dependence on the test filter size. Increasing stable stratification not only breaks the isotropy of the SEV but also modifies its basic shape, which poses a great challenge for implicit and explicit LES methods. We find indications that for stably stratified turbulence it is necessary to use different subgrid-scale (SGS) models for the horizontal and vertical velocity components. Our data disprove models that assume a constant positive effective turbulent Prandtl number.

Copyright
Corresponding author
Email address for correspondence: remmler@tum.de
References
Hide All
Aspden, A. J., Nikiforakis, N., Dalziel, S. B. & Bell, J. B. 2008 Analysis of implicit LES methods. Commun. Appl. Math. Comput. Sci. 3 (1), 103126.
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.
Chollet, J.-P.1984 Two-point closures as a subgrid scale modeling for large eddy simulations. In 4th Symposium on Turbulent Shear Flows (ed. H. Viets, R. J. Bethke & D. Bougine), p. 9.
Domaradzki, J. A., Metcalfe, R. W., Rogallo, R. S. & Riley, J. J. 1987 Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations. Phys. Rev. Lett. 58 (6), 547550.
Dougherty, J. P. 1961 The anisotropy of turbulence at the meteor level. J. Atmos. Sol.-Terr. Phys. 21, 210213.
Galperin, B. & Sukoriansky, S. 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with stable stratification. Ocean Dyn. 60, 13191337.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.
Godeferd, F. S. & Cambon, C. 1994 Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6 (6), 20842100.
Godeferd, F. S. & Staquet, C. 2003 Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy. J. Fluid Mech. 486, 115159.
Heisenberg, W. 1948 Zur statistischen Theorie der Turbulenz. Z. Phys. A 124, 628657.
Hickel, S., Adams, N. A. & Domaradzki, J. A. 2006 An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213, 413436.
Hickel, S., Adams, N. A. & Mansour, N. N. 2007 Implicit subgrid-scale modeling for large-eddy simulation of passive scalar mixing. Phys. Fluids 19, 095102.
Khani, S. & Waite, M. L. 2013 Effective eddy viscosity in stratified turbulence. J. Turbul. 14 (7), 4970.
Kitsios, V., Frederiksen, J. S. & Zidikheri, M. J. 2012 Subgrid model with scaling laws for atmospheric simulations. J. Atmos. Sci. 69 (4), 14271445.
Kitsios, V., Frederiksen, J. S. & Zidikheri, M. J. 2013 Scaling laws for parameterisations of subgrid eddy–eddy interactions in simulations of oceanic circulations. Ocean Model. 68, 88105.
Kraichnan, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 15211536.
Lilly, D. K. 1992 A proposed modification of the German subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41 (02), 363386.
Ozmidov, R. V. 1965 On the turbulent exchange in a stably stratified ocean. Izv., Atmos. Ocean. Phys. 1, 493497.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Remmler, S. & Hickel, S. 2012 Direct and large eddy simulation of stratified turbulence. Intl J. Heat Fluid Flow 35, 1324.
Remmler, S. & Hickel, S. 2013 Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation. Theor. Comput. Fluid Dyn. 27, 319336.
Shu, C.-W. 1988 Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9 (6), 10731084.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I: The basic experiment. Mon. Weath. Rev. 91, 99164.
Staquet, C. & Godeferd, F. S. 1998 Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 1. Flow energetics. J. Fluid Mech. 360, 295340.
Sukoriansky, S., Galperin, B. & Staroselsky, I. 2005 A quasinormal scale elimination model of turbulent flows with stable stratification. Phys. Fluids 17 (8), 085107.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed