Skip to main content
×
Home
    • Aa
    • Aa

Splash behaviour and oily marine aerosol production by raindrops impacting oil slicks

  • David W. Murphy (a1), Cheng Li (a1), Vincent d’Albignac (a1), David Morra (a1) and Joseph Katz (a1)...
Abstract

The high-speed impact of a droplet on a bulk fluid at high Weber number (We) is not well understood but is relevant to the production of marine aerosol by raindrop impact on the sea surface. These splashes produce a subsurface cavity and a crown which closes into a bubble canopy, but a floating layer of immiscible oil, such as a crude oil slick, alters the splash dynamics. The effects of oil layer fluid properties and thickness, droplet size and impact speed are examined by high-speed visualization. Oil layer rupture and crown behaviour are classified by dimensional scaling. The subsurface cavity volume for impact on thick layers is shown to depend on the Reynolds number (Re), although canopy formation at high Re introduces a competing We effect since rapid canopy closure is found to retard cavity expansion. Time-resolved kinematic measurements show that thin crude oil slicks similarly alter crown closure and cavity growth. The size and spatial distributions of airborne droplets are examined using high-speed holographic microscopy. The droplets have a bimodal distribution with peaks at 50 and $225~{\rm\mu}\text{m}$ and are clustered by size at different elevation angles. Small droplets ( $50~{\rm\mu}\text{m}$ ) are ejected primarily at shallow angles, indicating production by splashing within the first $100~{\rm\mu}\text{s}$ and by breakup of microligaments. Larger droplets ( $225~{\rm\mu}\text{m}$ ) are found at steeper elevation angles, indicating later production by capillary instability acting on large ligaments protruding upward from the crown. Intermittent droplet release while the ligaments grow and sweep upward is thought to contribute to the size-dependent spatial ordering. Greater numbers of small droplets are produced at high elevation angles when a crude oil layer is present, indicating satellite droplet formation from ligament breakup. A crude oil layer also increases the target fluid Ohnesorge number, leading to creation of an intact ejecta sheet, which then ruptures to form aerosolized oil droplets.

Copyright
Corresponding author
Email address for correspondence: katz@jhu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. Aeppli , R. K. Nelson , J. R. Radović , C. A. Carmichael , D. L. Valentine  & C. M. Reddy 2014 Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil. Environ. Sci. Technol. 48, 67266734.

G. Agbaglah  & R. D. Deegan 2014 Growth and instability of the liquid rim in the crown splash regime. J. Fluid Mech. 752, 485496.

G. Agbaglah , M. J. Thoraval , S. T. Thoroddsen , L. V. Zhang , K. Fezzaa  & R. D. Deegan 2015 Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764, R1.

S. R. Alm , D. L. Reichard  & F. R. Hall 1987 Effects of spray drop size and distribution of drops containing bifenthrin on Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 80, 517520.

F. Bauget , D. Langevin  & R. Lenormand 2001 Dynamic surface properties of asphaltenes and resins at the oil–air interface. J. Colloid Interface Sci. 239, 501508.

J. D. Bernardin , C. J. Stebbins  & I. Mudawar 1997 Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Intl J. Heat Mass Transfer 40 (2), 247267.

A. Bisighini , G. E. Cossali , C. Tropea  & I. V. Roisman 2010 Crater evolution after the impact of a drop onto a semi-infinite liquid target. Phys. Rev. E 82, 036319.

D. C. Blanchard 1989 The ejection of drops from the sea and their enrichment with bacteria and other materials: a review. Estuaries 12 (3), 127137.

D. C. Blanchard  & A. H. Woodcock 1957 Bubble formation and modification in the sea and its meteorological significance. Tellus 9 (2), 145158.

N. Bremond  & E. Villermaux 2006 Atomization by jet impact. J. Fluid Mech. 549, 273306.

Y. K. Cai 1989 Phenomena of a liquid drop falling to a liquid surface. Exp. Fluids 7, 388394.

D. S. Chapman  & P. R. Critchlow 1967 Formation of vortex rings from falling drops. J. Fluid Mech. 29, 177185.

Y. S. Cheng , Y. Zhou , C. M. Irvin , R. H. Pierce , J. Naar , L. C. Backer , L. E. Fleming , B. Kirkpatrick  & D. G. Baden 2005 Characterization of marine aerosol for assessment of human exposure to brevetoxins. Environ. Health Perspect. 113 (5), 638643.

C. Clanet 2007 Waterbells and liquid sheets. Annu. Rev. Fluid Mech. 39, 469496.

G. E. Cossali , A. Coghe  & M. Marengo 1997 The impact of a single drop on a wetted solid surface. Exp. Fluids 22, 463472.

G. T. Csanady 2001 Air–Sea Interaction: Laws and Mechanisms. Cambridge University Press.

R. D. Deegan , P. Brunet  & J. Eggers 2008 Complexities of splashing. Nonlinearity 21, C1C11.

G. A. L. Delvigne  & C. E. Sweeney 1988 Natural dispersion of oil. Oil Chem. Pollut. 4, 281310.

Q. Deng , A. V. Anilkumar  & T. G. Wang 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.

R. J. Donnelly  & W. Glaberson 1966 Experiments on the capillary instability of a liquid jet. Proc. R. Soc. Lond. A 290 (1423), 547556.

J. Eggers  & E. Villermaux 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.

P. A. Elmore , G. L. Chahine  & H. N. Oguz 2001 Cavity and flow measurements of reproducible bubble entrainment following drop impacts. Exp. Fluids 31, 664673.

O. G. Engel 1966 Crater depth in fluid impacts. J. Appl. Phys. 37 (4), 17981808.

O. G. Engel 1967 Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts. J. Appl. Phys. 38 (10), 39353940.

L. Esmailizadeh  & R. Mesler 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110 (2), 561574.

U. Farooq , S. Simon , M. E. Tweheyo , G. Øye  & J. Sjöblom 2013 Interfacial tension measurements between oil fractions of a crude oil and aqueous solutions with different ionic composition and pH. J. Disper. Sci. Technol. 34, 701708.

A. I. Fedorchenko  & A. Wang 2004 On some common features of drop impact on liquid surfaces. Phys. Fluids 16 (5), 13491365.

B. D. L. Fitt , H. A. McCartney  & P. J. Walklate 1989 The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27, 241271.

B. Franklin , W. Brownrigg  & 1774 Of the stilling of waves by means of oil. Extracted from Sundry Letters between Benjamin Franklin, LL. D. F. R. S., William Brownrigg, M. D. F. R. S. and the Reverend Mr Farish. Phil. Trans. 64, 445460.

G. J. Franz 1959 Splashes as sources of sound in liquids. J. Acoust. Soc. Am. 31 (8), 10801096.

E. M. Freer  & C. J. Radke 2004 Relaxation of asphaltenes at the toluene/water interface: diffusion exchange and surface rearrangement. J. Adhes. 80, 481496.

T. Fujimatsu , H. Fujita , M. Hirota  & O. Okada 2003 Interfacial deformation between an impacting water drop and a silicone-oil surface. J. Colloid Interface Sci. 264, 212220.

B. Gopalan  & J. Katz 2010 Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets. Phys. Rev. Lett. 104, 054501.

D. R. Guildenbecher , L. Engvall , J. Gao , T. W. Grasser , P. L. Reu  & J. Chen 2014 Digital in-line holography to quantify secondary droplets from the impact of a single drop on a thin film. Exp. Fluids 55, 1670.

P. Guillot , A. Colin , A. S. Utada  & A. Ajdari 2007 Stability of a jet in a confined pressure-driven biphasic flow at low Reynolds numbers. Phys. Rev. Lett. 99, 104502.

R. Gunn  & G. D. Kinzer 1949 The terminal velocity of fall for water droplets in stagnant air. J. Meteorol. 6, 243248.

J. T. Hardy 1982 The sea surface microlayer: biology, chemistry and anthropogenic enrichment. Prog. Oceanogr. 11, 307328.

E. Harvey 1925 The surface tension of crude oils. Ind. Engng Chem. 17 (1), 8585.

R. L. Hines 1966 Electrostatic atomization and spray painting. J. Appl. Phys. 37 (7), 27302735.

P. V. Hobbs  & T. Osheroff 1967 Splashing of drops on shallow liquids. Science 158, 11841186.

M. Hsiao , S. Lichter  & L. G. Quintero 1988 The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31 (12), 35603562.

Y. T. Hu , D. J. Pine  & G. Leal 2000 Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids 12 (3), 484489.

J. Katz  & J. Sheng 2010 Applications of holography in fluid mechanics and particle dynamics. Annu. Rev. Fluid Mech. 42, 531555.

M. Khaleeq-ur-Rahman  & C. P. R. Saunders 1988 Corona from splashing water drops. J. Atmos. Terr. Phys. 50 (6), 545555.

C. F. Kientzler , A. B. Arons , D. C. Blanchard  & A. H. Woodcock 1954 Photographic investigation of the projection of droplets by bubbles bursting at a water surface. Tellus 6 (1), 305658.

T. A. Kowalewski 1996 On the separation of droplets from a liquid jet. Fluid Dyn. Res. 17, 121145.

R. Krechetnikov  & G. M. Homsy 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555559.

L. J. Leng 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.

Z. Levin  & P. V. Hobbs 1971 Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Phil. Trans. R. Soc. Lond. A 269, 555585.

H. Lhuissier , C. Sun , A. Prosperetti  & D. Lohse 2013 Drop fragmentation at impact onto a bath of an immiscible liquid. Phys. Rev. Lett. 110, 264503.

H. Lhuissier  & E. Villermaux 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.

M. Li  & C. Garrett 1998 The relationship between oil droplet size and upper ocean turbulence. Mar. Pollut. Bull. 36 (12), 961970.

Z. Li , K. Lee , T. King , M. C. Boufadel  & A. D. Venosa 2008 Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions. Mar. Pollut. Bull. 56, 903912.

W. C. Macklin  & P. V. Hobbs 1969 Subsurface phenomena and the splashing of drops on shallow liquids. Science 166, 107108.

W. C. Macklin  & G. J. Metaxas 1976 Splashing of drops on liquid layers. J. Appl. Phys. 47 (9), 39633970.

E. Malkiel , J. Sheng , J. Katz  & R. Strickler 2003 The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J. Expl Biol. 206, 36573666.

P. Marmottant , E. Villermaux  & C. Clanet 2000 Transient surface tension of an expanding liquid sheet. J. Colloid Interface Sci. 230, 2940.

H. Medwin , J. A. Nystuen , P. W. Jacobus , L. H. Ostwald  & D. E. Snyder 1992 The anatomy of underwater rain noise. J. Acoust. Soc. Am. 92 (3), 16131623.

D. Morton , M. Rudman  & J. L. Leng 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12 (4), 747763.

H. N. Oguz  & A. Propseretti 1990 Bubble entrainment by the impacts of drops on liquid surfaces. J. Fluid Mech. 219, 143179.

T. Okawa , T. Shiraishi  & T. Mori 2006 Production of secondary drops during the single water drop impact onto a plane surface. Exp. Fluids 41, 965974.

K. A. Prather , T. H. Bertram , V. H. Grassian , G. B. Deane , M. D. Stokes , P. J. DeMott , L. I. Aluwihare , B. P. Palenik , F. Azam , J. H. Seinfeld , R. C. Moffet , M. J. Molina , C. D. Cappa , F. M. Geiger , G. C. Roberts , L. M. Russell , A. P. Ault , J. Baltrusaitis , D. B. Collins , C. E. Corrigan , L. A. Cuadra-Rodriguez , C. J. Ebben , S. D. Forestieri , T. L. Guasco , S. P. Hersey , M. J. Kim , W. F. Lambert , R. L. Modini , W. Mui , B. E. Pedler , M. J. Ruppel , O. S. Ryder , N. G. Schoepp , R. C. Sullivan  & D. Zhao 2013 Bringing the complexity of the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110, 75507555.

H. C. Pumphrey  & P. A. Elmore 1990 The entrainment of bubbles by drop impacts. J. Fluid Mech. 220, 539567.

M. D. Reichert  & L. M. Walker 2013 Interfacial tension dynamics, interfacial mechanics, and response to rapid dilution of bulk surfactant of a model oil–water–dispersant system. Langmuir 29, 18571867.

M. Rein 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.

M. Rein 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.

F. J. Resch  & G. M. Afeti 1991 Film drop distributions from bubbles bursting in seawater. J. Geophys. Res. 96 (C6), 1068110688.

F. J. Resch , J. S. Darrozes  & G. M. Afeti 1986 Marine liquid aerosol production from bursting of air bubbles. J. Geophys. Res. 91 (C1), 10191029.

D. A. Riehm  & A. V. McCormick 2014 The role of dispersants’ dynamic interfacial tension in effective crude oil spill dispersion. Mar. Pollut. Bull. 84, 155163.

R. Rioboo , C. Bauthier , J. Conti , M. Voué  & J. De Coninck 2003 Experimental investigation of splash and crown formation during single drop impact on wetted surfaces. Exp. Fluids 35, 648652.

Y. Rotenberg , L. Boruvka  & A. W. Neumann 1983 Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93 (1), 169183.

E. van de Sande , J. M. Smith  & J. J. J. van Oord 1974 Energy transfer and cavity formation in liquid-drop collisions. J. Appl. Phys. 45 (2), 748753.

C. A. Schneider , W. S. Rasband  & K. W. Eliceiri 2012 NIH image to imageJ: 25 years of image analysis. Nat. Meth. 9 (7), 671675.

J. Sheng , E. Malkiel  & J. Katz 2006 Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl. Opt. 45 (16), 38933901.

H. Shetabivash , F. Ommi  & G. Heidarinejad 2014 Numerical analysis of droplet impact onto liquid film. Phys. Fluids 26, 012102.

J. Sigler  & R. Mesler 1989 The behavior of a gas film formed upon drop impact with a liquid surface. J. Colloid Interface Sci. 134 (2), 459474.

B. Song  & J. Springer 1996 Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing. 1. Theoretical. J. Colloid Interface Sci. 184, 6476.

H. Stone 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65102.

C. D. Stow  & R. D. Stainer 1977 The physical products of a splashing water drop. J. Met. Soc. Japan 55 (5), 518532.

S. Talapatra , J. Hong , M. McFarland , A. Nayak , C. Zhang , J. Katz , J. Sullivan , M. Twardowski , J. Rines  & P. Donaghay 2013 Characterization of biophysical interactions in the water column using in situ digital holography. Mar. Ecol. Prog. Ser. 473, 2951.

S. Talapatra  & J. Katz 2013 Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching. Meas. Sci. Technol. 24, 024004.

G. I. Taylor 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.

J. M. Teal  & R. W. Howarth 1984 Oil spill studies: a review of ecological effects. Environ. Manage. 8 (1), 2744.

H. Tervahattu , K. Hartonen , V. Kerminen , K. Kupiainen , P. Aarnio , T. Koskentalo , A. Tuck  & V. Vaida 2002 New evidence of an organic layer on marine aerosols. J. Geophys. Res. 107 (D7), 4053.

M. J. Thoraval , K. Takehara , T. G. Etoh , S. Popinet , P. Ray , C. Josserand  & S. T. Thoroddsen 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.

M. J. Thoraval , K. Takehara , T. G. Etoh  & S. T. Thoroddsen 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 235258.

S. T. Thoroddsen 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.

S. T. Thoroddsen , M.-J. Thoraval , K. Takehara  & T. G. Etoh 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106, 034501.

S. T. Thoroddsen , M. J. Thoraval , K. Takehara  & T. G. Etoh 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.

S. A. Thorpe 1995 Vertical dispersion of oil droplets in strong winds: the Braer oil spill. Mar. Pollut. Bull. 30 (11), 756758.

Y. Tomita , T. Saito  & S. Ganbara 2007 Surface breakup and air bubble formation by drop impact in the irregular entrainment region. J. Fluid Mech. 588, 131152.

T. Tran , H. de Maleprade , C. Sun  & D. Lohse 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.

M. Tsimplis  & S. A. Thorpe 1989 Wave damping by rain. Nature 342, 893895.

P. Vassallo  & N. Ashgriz 1991 Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A 433, 269286.

E. Villermaux 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.

E. Villermaux  & B. Bossa 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697702.

E. Villermaux  & B. Bossa 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.

E. Villermaux , Ph. Marmottant  & J. Duplat 2004 Ligament-mediated spray formation. Phys. Rev. Lett. 92, 074501.

E. Villermaux , V. Pistre  & H. Lhuissier 2013 The viscous Savart sheet. J. Fluid Mech. 730, 607625.

J.-B. Wacheul , M. Le Bars , J. Monteux  & J. Aurnou 2014 Laboratory experiments on the breakup of liquid metal diapirs. Earth Planet. Sci. Lett. 403, 236245.

A. Wang  & C. Chen 2000 Splashing impact of a single drop onto very thin liquid films. Phys. Fluids 12 (9), 21552158.

D. A. Weiss  & A. L. Yarin 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.

D. C. Y. Wong , M. J. H. Simmons , S. P. Decent , E. I. Parau  & A. C. King 2004 Break-up dynamics and drop size distributions created from spiraling liquid jets. Intl J. Multiphase Flow 30, 499520.

A. M. Worthington 1876 On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 261282.

L. Xu , L. Barcos  & S. R. Nagel 2007 Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311.

L. V. Zhang , P. Brunet , J. Eggers  & R. D. Deegan 2010 Wavelength selection in the crown splash. Phys. Fluids 22, 122105.

L. V. Zhang , J. Toole , K. Fezzaa  & R. D. Deegan 2011 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 515.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 16
Total number of PDF views: 149 *
Loading metrics...

Abstract views

Total abstract views: 379 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th September 2017. This data will be updated every 24 hours.