Skip to main content
×
Home
    • Aa
    • Aa

The stability of laminar symmetric separated wakes

  • IAN P. CASTRO (a1)
Abstract

Time-dependent computations of the two-dimensional incompressible uniform-velocity laminar flow past a normal flat plate (of unit half-width) in a channel are presented. Attention is restricted to cases in which the well-known anti-symmetric (von Kármán-type) vortex shedding is suppressed by the imposition of a symmetry plane on the downstream plate centreline. With a further symmetry plane at the channel's upper boundary, the only two governing parameters in the problem are the channel half-width, $H$, and the Reynolds number, $Re$ (based on the body half-width and the upstream velocity, $U$). The former is restricted to the range $3\,{\leq}\, H \,{\leq}\,30$ and the interest lies in determining the nature of the initial instability which occurs in the separated wake as $Re$ is gradually increased. It is found that for sufficiently large $H$ and at a critical $Re$, a long-time-scale global (supercritical) instability is initiated, which in its saturated (limit) state takes the form of ‘lumps’ of vorticity being periodically shed from the tail end of the separated bubble. Stability calculations of corresponding mean flow profiles (typical of those found in the separated wake) are undertaken by examining the impulse response of particular profiles via appropriate solution of the Orr–Sommerfeld equation. The results of this analysis extend those available from related published work and are consistent with the behaviour found from the numerical computations. Taken together, all the results suggest that this type of global instability may be generic to many kinds of separated wakes and, indeed, may provide the fundamental explanation for the very low-frequency oscillations often noticed in fully turbulent wake bubbles.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 37 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th May 2017. This data will be updated every 24 hours.