Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Wu, Lei Zhang, Yonghao and Reese, Jason M. 2015. Fast spectral solution of the generalized Enskog equation for dense gases. Journal of Computational Physics, Vol. 303, p. 66.


    Garzó, Vicente Murray, J. Aaron and Vega Reyes, Francisco 2013. Diffusion transport coefficients for granular binary mixtures at low density: Thermal diffusion segregation. Physics of Fluids, Vol. 25, Issue. 4, p. 043302.


    Reyes, Francisco Vega Garzó, Vicente and Khalil, Nagi 2014. Hydrodynamic granular segregation induced by boundary heating and shear. Physical Review E, Vol. 89, Issue. 5,


    Chamorro, Moisés G. Reyes, Francisco Vega and Garzó, Vicente 2015. Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow. Physical Review E, Vol. 92, Issue. 5,


    ×
  • Journal of Fluid Mechanics, Volume 719
  • March 2013, pp. 431-464

Steady base states for non-Newtonian granular hydrodynamics

  • Francisco Vega Reyes (a1), Andrés Santos (a1) and Vicente Garzó (a1)
  • DOI: http://dx.doi.org/10.1017/jfm.2012.620
  • Published online: 19 February 2013
Abstract
Abstract

We study in this work steady laminar flows in a low-density granular gas modelled as a system of identical smooth hard spheres that collide inelastically. The system is excited by shear and temperature sources at the boundaries, which consist of two infinite parallel walls. Thus, the geometry of the system is the same that yields the planar Fourier and Couette flows in standard gases. We show that it is possible to describe the steady granular flows in this system, even at large inelasticities, by means of a (non-Newtonian) hydrodynamic approach. All five types of Couette–Fourier granular flows are systematically described, identifying the different types of hydrodynamic profiles. Excellent agreement is found between our classification of flows and simulation results. Also, we obtain the corresponding nonlinear transport coefficients by following three independent and complementary methods: (i) an analytical solution obtained from Grad’s 13-moment method applied to the inelastic Boltzmann equation; (ii) a numerical solution of the inelastic Boltzmann equation obtained by means of the direct simulation Monte Carlo method; and (iii) event-driven molecular dynamics simulations. We find that, while Grad’s theory does not describe quantitatively well all transport coefficients, the three procedures yield the same general classification of planar Couette–Fourier flows for the granular gas.

Copyright
Corresponding author
Email address for correspondence: fvega@unex.es
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. K. Agarwal , K.-Y. Yun & R. Balakrishnan 2001 Beyond Navier–Stokes: Burnett equations for flows in the continuum transition regime. Phys. Fluids 13, 30613085.


M. Alam & S. Luding 2003 Rheology of bidisperse granular mixtures via event-driven simulations. J. Fluid Mech. 476, 69103.



F. J. Alexander & A. L. Garcia 1997 The direct simulation Monte Carlo method. Comput. Phys. 11, 588593.

I. S. Aranson & L. S. Tsimring 2006 Patterns and collective behaviour in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641692.

A. Astillero & A. Santos 2005 Uniform shear flow in dissipative gases: computer simulations of inelastic hard spheres and frictional elastic hard spheres. Phys. Rev. E 72, 031309.

J. J. Brey & D. Cubero 1998 Steady state of a fluidized granular medium betwen two walls at the same temperature. Phys. Rev. E 57, 20192029.

J. J. Brey & D. Cubero 2001 Hydrodynamic transport coefficients of granular gases. In Granular Gases (ed. T. Pöschel & S. Luding). Lectures Notes in Physics, vol. 564. pp. 5978. Springer.

J. J. Brey , D. Cubero , F. Moreno & M. J. Ruiz-Montero 2001 Fourier state of a fluidized granular gas. Europhys. Lett. 53, 432437.

J. J. Brey , J. W. Dufty , C. S. Kim & A. Santos 1998 Hydrodynamics for granular flow at low density. Phys. Rev. E 58, 46384653.

J. J. Brey , N. Khalil & J. W Dufty 2011 Thermal segregation beyond Navier–Stokes. New J. Phys. 13, 055019.

J. J. Brey , N. Khalil & J. W Dufty 2012 Thermal segregation of intruders in the Fourier state of a granular gas. Phys. Rev. E 85, 021307.

J. J. Brey , M. J. Ruiz-Montero & F. Moreno 2000 Boundary conditions and normal state for a vibrated granular fluid. Phys. Rev. E 62, 53395346.

N. V. Brilliantov & T. Pöschel 2004 Kinetic Theory of Granular Gases. Oxford University Press.

N. V. Brilliantov , T. Pöschel , W. T. Kranz & A. Zippelius 2007 Translations and rotations are correlated in granular gases. Phys. Rev. Lett. 98, 128001.


C. Cercignani 1988 The Boltzmann Equation and its Applications. Springer.

S. R. Dahl , C. M. Hrenya , V. Garzó & J. W. Dufty 2002 Kinetic temperatures for a granular mixture. Phys. Rev. E 66, 041301.


V. Garzó & J. M. Montanero 2002 Transport coefficients of a heated granular gas. Physica A 313, 336356.

V. Garzó & A. Santos 2003 Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer.

V. Garzó , A. Santos & J. M. Montanero 2007 Modified Sonine approximation for the Navier–Stokes transport coefficients of a granular gas. Physica A 376, 94107.

V. Garzó & F. Vega Reyes 2009 Mass transport of impurities in a moderately dense granular gas. Phys. Rev. E 79, 041303.

I. Goldhirsch 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.

I. Goldhirsch & G. Zanetti 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 16191622.

H. Grad 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 331407.

E. L. Grossman , T. Zhou & E. Ben-Naim 1997 Towards granular hydrodynamics in two dimensions. Phys. Rev. E 55, 4200.


N. Herdegen & S. Hess 1982 Nonlinear flow behaviour of the Boltzmann gas. Physica A 115, 281299.

D. Hilbert 1912 Begründung der kinetischen Gastheorie. Math. Ann. 72, 562577.

M. A. Hopkins & M. Y. Louge 1991 Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 4757.


J. T. Jenkins & D. K. Yoon 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88, 194301.

E. Khain & B. Meerson 2003 Onset of thermal convection in a horizontal layer of granular gas. Phys. Rev. E 67, 021306.

I. Kolvin , E. Livne & B. Meerson 2010 Navier–Stokes hydrodynamics of thermal collapse in a freely cooling granular gas. Phys. Rev. E 82, 021302.

G. M. Kremer 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer.

A. W. Lees & S. F. Edwards 1972 The computer study of transport processes under extreme conditions. J. Phys. C 5, 19211929.

A. E. Lobkovsky , F. Vega Reyes & J. S. Urbach 2009 The effects of forcing and dissipation on phase transitions in thin granular layers. Eur. Phys. J. Spec. Top. 179, 113.

C. K. K. Lun 1996 Granular dynamics of inelastic spheres in Couette flow. Phys. Fluids 8, 28682883.

J. Lutsko , J. J. Brey & J. W. Dufty 2002 Diffusion in a granular fluid. II. Simulation. Phys. Rev. E 65, 051304.

S. McNamara & S. Luding 1998 Energy non-equipartition in systems of inelastic, rough spheres. Phys. Rev. E 58, 22472250.

J. M. Montanero , V. Garzó , M. Alam & S. Luding 2006 Rheology of two- and three-dimensional granular mixtures under uniform shear flow: Enskog kinetic theory versus molecular dynamics simulations. Granul. Matt. 8, 103115.

J. M. Montanero , M. López de Haro , V. Garzó & A. Santos 1998 Strong shock waves in a dense gas: Burnett theory versus Monte Carlo simulation. Phys. Rev. E 58, 73197324.

J. M. Montanero , M. López de Haro , A. Santos & V. Garzó 1999 Simple and accurate theory for strong shock waves in a dense hard-sphere fluid. Phys. Rev. E 60, 75927595.



I. Pagonabarraga , E. Trizac , T. P. C. van Noije & M. H. Ernst 2002 Randomly driven granular fluids: collisional statistics and short scale structure. Phys. Rev. E 65, 011303.

A. Prevost , D. E. Egolf & J. S. Urbach 2002 Forcing and velocity correlations in a vibrated granular monolayer. Phys. Rev. Lett. 89, 084301.

A. Santos , V. Garzó & J. W. Dufty 2004 Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E 69, 061303.

A. Santos , V. Garzó & F. Vega Reyes 2009 An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux. Eur. Phys. J. Spec. Top. 179, 141156.

S. Schlamp & B. C. Hathorn 2007 Incomplete molecular chaos within dense-fluid shock waves. Phys. Rev. E 76, 026314.


R. Soto & M. Mareschal 2001 Statistical mechanics of fluidized granular media: short-range velocity correlations. Phys. Rev. E 63, 041303.

R. Soto , J. Piasecki & M. Mareschal 2001 Precollisional velocity correlations in a hard-disk fluid with dissipative collisions. Phys. Rev. E 64, 031306.

M. Tij & A. Santos 2004 Poiseuille flow in a heated granular gas. J. Stat. Phys. 117, 901928.

M. Tij , E. E. Tahiri , J. M. Montanero , V. Garzó , A. Santos & J. W. Dufty 2001 Nonlinear Couette flow in a low density granular gas. J. Stat. Phys. 103, 10351068.


F. Vega Reyes , V. Garzó & A. Santos 2011a Class of dilute granular Couette flows with uniform heat flux. Phys. Rev. E 83, 021302.

F. Vega Reyes , A. Santos & V. Garzó 2010 Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common? Phys. Rev. Lett. 104, 028001.


Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords: