Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 10
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Bulatov, V. V. and Vladimirov, Yu. V. 2015. Internal gravityWaves excited by a pulsating source of perturbations. Fluid Dynamics, Vol. 50, Issue. 6, p. 741.

    Brandt, A. and Rottier, J. R. 2015. The internal wavefield generated by a towed sphere at low Froude number. Journal of Fluid Mechanics, Vol. 769, p. 103.

    Watanabe, T. Riley, J. J. and Nagata, K. 2016. Effects of stable stratification on turbulent/nonturbulent interfaces in turbulent mixing layers. Physical Review Fluids, Vol. 1, Issue. 4,

    Zhou, Qi and Diamessis, Peter J. 2015. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface. Physics of Fluids, Vol. 27, Issue. 12, p. 126601.

    Pal, Anikesh de Stadler, Matthew B. and Sarkar, Sutanu 2013. The spatial evolution of fluctuations in a self-propelled wake compared to a patch of turbulence. Physics of Fluids, Vol. 25, Issue. 9, p. 095106.

    Munroe, James R. and Sutherland, Bruce R. 2014. Internal wave energy radiated from a turbulent mixed layer. Physics of Fluids, Vol. 26, Issue. 9, p. 096604.

    Zhou, Qi and Diamessis, Peter J. 2013. Reflection of an internal gravity wave beam off a horizontal free-slip surface. Physics of Fluids, Vol. 25, Issue. 3, p. 036601.

    Bulatov, V. V. and Vladimirov, Yu. V. 2015. Far fields of internal gravity waves at arbitrary movement speeds of source of disturbances. Izvestiya, Atmospheric and Oceanic Physics, Vol. 51, Issue. 6, p. 609.

    Diamessis, P.J. Wunsch, S. Delwiche, I. and Richter, M.P. 2014. Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline. Dynamics of Atmospheres and Oceans, Vol. 66, p. 110.

    Joshi, Sumedh M. Thomsen, Greg N. and Diamessis, Peter J. 2016. Deflation-accelerated preconditioning of the Poisson–Neumann Schur problem on long domains with a high-order discontinuous element-based collocation method. Journal of Computational Physics, Vol. 313, p. 209.

  • Journal of Fluid Mechanics, Volume 720
  • April 2013, pp. 104-139

The internal gravity wave field emitted by a stably stratified turbulent wake

  • Ammar M. Abdilghanie (a1) and Peter J. Diamessis (a2)
  • DOI:
  • Published online: 27 February 2013

The internal gravity wave (IGW) field emitted by a stably stratified, initially turbulent, wake of a towed sphere in a linearly stratified fluid is studied using fully nonlinear numerical simulations. A wide range of Reynolds numbers, $\mathit{Re}= UD/ \nu \in [5\times 1{0}^{3} , 1{0}^{5} ] $ and internal Froude numbers, $\mathit{Fr}= 2U/ (ND)\in [4, 16, 64] $ ($U$, $D$ are characteristic body velocity and length scales, and $N$ is the buoyancy frequency) is examined. At the higher $\mathit{Re}$ examined, secondary Kelvin–Helmholtz instabilities and the resulting turbulent events, directly linked to a prolonged non-equilibrium (NEQ) regime in wake evolution, are responsible for IGW emission that persists up to $Nt\approx 100$. In contrast, IGW emission at the lower $\mathit{Re}$ investigated does not continue beyond $Nt\approx 50$ for the three $\mathit{Fr}$ values considered. The horizontal wavelengths of the most energetic IGWs, obtained by continuous wavelet transforms, increase with $\mathit{Fr}$ and appear to be smaller at the higher $\mathit{Re}$, especially at late times. The initial value of these wavelengths is set by the wake height at the beginning of the NEQ regime. At the lower $\mathit{Re}$, consistent with a recently proposed model, the waves propagate over a narrow range of angles that minimize viscous decay along their path. At the higher $\mathit{Re}$, wave motion is much less affected by viscosity, at least initially, and early-time wave propagation angles extend over a broader range of values which are linked to increased efficiency in momentum extraction from the turbulent wake source.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. S. Addison 2002 The Illustrated Wavelet Transform Handbook. Institute of Physics.

D. A. Aguilar & B. R. Sutherland 2006 Internal wave generation from rough topography. Phys. Fluids 18, 066603.

D. A. Aguilar , B. R. Sutherland & D. J. Muraki 2006 Laboratory generation of internal waves from sinusoidal topography. Deep-Sea Res. II 53 (1–2), 96115.

P. Bonneton , J. M. Chomaz & E. J. Hopfinger 1993 Internal waves produced by the turbulent wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254, 2340.

M. Bonnier , P. Bonneton & O. Eiff 1998 Far-wake of a sphere in a stably stratified fluid: characterization of vortex structures. Appl. Sci. Res. 59, 269281.

D. Broutman , J. W. Rottman & S. D. Eckert 2004 Ray methods for internal waves in the atmosphere and ocean. Annu. Rev. Fluid Mech. 36, 233253.

Y. D. Chashechkin 1989 Hydrodynamics of a sphere in a stratified fluid. Fluid Dyn. 24 (1), 17.

H. A. Clarke & B. R Sutherland 2010 Generation, propagation, and breaking of an internal wave beam. Phys. Fluids 22, 076601.

A. Deloncle , P. Billant & J. M. Chomaz 2008 Nonlinear evolution of the zigzag instability in stratified fluids: a shortcut on the route to dissipation. J. Fluid Mech. 599, 229239.

P. J. Diamessis , J. A. Domaradzki & J. S. Hesthaven 2005 A spectral multidomain penalty method model for the simulation of high Reynolds number localized stratified turbulence. J. Comput. Phys. 202, 298322.

P. J. Diamessis , R. Gurka & A. Liberzon 2010 Spatial characterization of vortical structures and internal waves in a stratified turbulent wake using proper orthogonal decomposition. Phys. Fluids 22, 086601.

P. J. Diamessis & K. K. Nomura 2000 Interaction of vorticity, rate-of-strain and scalar gradient in stratified homogeneous sheared turbulence. Phys. Fluids 12, 11661188.

K. Dohan & B. R. Sutherland 2003 Internal waves generated from a turbulent mixed region. Phys. Fluids 15, 488.

K. Dohan & B. R. Sutherland 2005 Numerical and laboratory generation of internal waves from turbulence. Dyn. Atmos. Oceans 40, 4356.

D. G. Dommermuth , J. W. Rottman , G. E. Innis & E. A. Novikov 2002 Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 473, 83101.

J. P. Dougherty 1961 The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys. 21 (2–3), 210213.

O. A. Druzhinin 2009 Generation of internal waves by a turbulent jet in a stratified fluid. Fluid Dyn. 44, 213223.

D. R. Durran 1999 Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer.

H. E. Gilreath & A. Brandt 1985 Experiments on the generation of internal waves in a stratified fluid. AIAA J. 23, 693700.

M. J. Gourlay , S. C. Arendt , D. C. Fritts & J. Werne 2001 Numerical modelling of initially turbulent wakes with net momentum. Phys. Fluids 13, 37833802.

E. J. Hopfinger , J. B. Flor , J. M. Chomaz & P. Bonneton 1991 Internal waves generated by a moving sphere and its wake in a stratified fluid. Exp. Fluids 11 (4), 255261.

M. Israeli & S. A. Orszag 1981 Approximation of radiation boundary conditions. J. Comput. Phys. 41 (1), 115135.

E. C. Itsweire , J. R. Koseff , D. A. Briggs & J. H. Ferziger 1993 Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr. 23, 15081522.

R. N. Keeler , V. G. Bondur & C. H. Gibson 2005 Optical satellite imagery detection of internal wave effects from a submerged turbulent outfall in the stratified ocean. Geophys. Res. Lett. 32 (12), L12610.

J. B. Klemp & D. K. Lilly 1978 Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 35 (1), 78107.

M. J. Lighthill 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.

D. K. Lilly 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749761.

P. Meunier , P. J. Diamessis & G. R. Spedding 2006 Self-preservation of stratified momentum wakes. Phys. Fluids 18, 106601.

J. W. Miles 1971 Internal waves generated by a horizontally moving source. J. Geophys. Astrophys. Fluid Dyn. 2 (1), 6387.

J. N. Moum , D. Hebert , C. A. Paulson & D. R. Caldwell 1992 Turbulence and internal waves at the equator. Part I: Statistics from towed thermistors and a microstructure profiler. J. Phys. Oceanogr. 22 (11), 13301345.

J. R. Munroe & B. R. Sutherland 2008 Generation of internal waves by sheared turbulence: experiments. Environ. Fluid Mech. 8 (5), 527534.

C. J. Nappo 2002 An Introduction to Atmospheric Gravity Waves. Academic.

S. A. Orszag & Y. H. Pao 1975 Numerical computation of turbulent shear flows. Adv. Geophys. 18 (1), 225236.

R. Plougonven & V. Zeitlin 2002 Internal gravity wave emission from a pancake vortex: an example of wave–vortex interaction in strongly stratified flows. Phys. Fluids 14, 1259.

J. J. Riley & S. M. de Bruyn Kops 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 20472059.

J. J. Riley & E. Lindborg 2008 Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65 (7), 24162424.

H. F. Robey 1997 The generation of internal waves by a towed sphere and its wake in a thermocline. Phys. Fluids 9, 3353.

W. D. Smyth & J. N. Moum 2000 Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 12, 1327.

G. R. Spedding , F. K. Browand , N. E. Huang & S. R. Long 1993 A 2-D complex wavelet analysis of an unsteady wind-generated surface wave field. Dyn. Atmos. Oceans 20 (1–2), 5577.

M. B. de Statler , S. Sarkar & K. A. Brucker 2010 Effect of the Prandtl number on a stratified turbulent wake. Phys. Fluids 22, 095102.

B. R. Sutherland 2010 Internal Gravity Waves. Cambridge University Press.

B. R. Sutherland , M. R. Flynn & K. Dohan 2004 Internal wave excitation from a collapsing mixed region. Deep-Sea Res. II 51, 28892904.

J. R. Taylor & S. Sarkar 2007 Internal gravity waves generated by a turbulent bottom Ekman layer. J. Fluid Mech. 590, 331354.

J. R. Taylor & S. Sarkar 2008 Stratification effects in a bottom Ekman layer. J. Phys. Oceanogr. 38 (11), 25352555.

S. A. Thorpe 2005 The Turbulent Ocean. Cambridge University Press.

M. H. Trauth 2010 MATLAB® Recipes for Earth Sciences. Springer.

H. W. Wijesekera & T. M. Dillon 1991 Internal waves and mixing in the upper equatorial Pacific Ocean. J. Geophys. Res. 96 (C4), 71157125.

N. A. Zavol’Skii & A. A. Zaitsev 1984 Development of internal waves generated by a concentrated pulse source in an infinite uniformly stratified fluid. J. Appl. Mech. Tech. Phys. 25 (6), 862867.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *