Skip to main content
×
Home
    • Aa
    • Aa
  • Journal of Fluid Mechanics, Volume 219
  • October 1990, pp. 25-50

The shape and stability of pinned rotating annular menisci

  • P. D. Weidman (a1) (a2), S. Krumdieck (a3) and P. Rouse (a3)
  • DOI: http://dx.doi.org/10.1017/S0022112090002853
  • Published online: 01 April 2006
Abstract

Laboratory measurements on the instability of axisymmetric capillary surfaces pinned to the corners of annular grooves of rectangular section rotating at constant angular velocity Ω have been conducted. In stable configurations the fluid contact lines remain pinned to the corners of the groove with contact angles θ1,2 relative to the inner and outer vertical walls. Using water as the test fluid in narrow grooves of nearly constant width, the critical frequency Ωc for instability generally decreases with increasing overfill volume ΔV and mean groove radius. Numerical integration of the describing equation gives the shape of the rotating meniscus as a function of five independent parameters. In the range of contact angles θ1, 2 < π, a comparison of experimental results with numerically computed meniscus profiles suggests three mechanisms for contact line movement based on the effective static advancing (θA) and receding (θR) contact angles for liquid pinned to a sharp corner. Measurements of critical frequencies over a wide range of overfill volumes in six different grooves are in favourable agreement with composite regime diagrams for the critical static meniscus configuration. An interesting feature of this system is the existence of a range of overfill volumes inaccessible to experiments conducted by fixing the overfill volume on a stationary disk and subsequently elevating the disk rotation until contact line movement is observed. Numerical studies showing the effects of Bond number, groove curvature and contact angle hysteresis are presented.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax