Skip to main content

Tunable fall velocity of a dense ball in oscillatory cross-sheared concentrated suspensions

  • Frédéric Blanc (a1), Elisabeth Lemaire (a1) and François Peters (a1)

The fall velocity of a dense large ball in a suspension of neutrally buoyant non-Brownian particles subjected to horizontal oscillatory shear is studied. As the strain amplitude is increased, the velocity increases up to a maximum value before decreasing to the value that it would have in a resting suspension. The higher the frequency is, the stronger the effect is. The falling ball velocity can be largely increased in the presence of the oscillatory cross-shear flow. For instance, for a particle volume fraction of $\varPhi =0.47$ it reaches four times the value it has in the unsheared suspension. At small strain amplitudes, it turns out that the velocity of the falling ball is determined by a balance between the steady drag flow, which drives the apparent suspension viscosity toward a high value, and the oscillatory cross-shear, which lessens it. A simple model is proposed to explain the experimental observations at small strain amplitude. The velocity decrease observed at larger amplitude is not completely understood yet.

Corresponding author
Email address for correspondence:
Hide All
Barral Q.2011 Superposition d’écoulements orthogonaux dans des fluides complexes: mise en place de l’expérience, application aux suspensions et aux fluides à seuil. PhD thesis, Université Paris-Est.
Blanc F., Lemaire E., Meunier A. & Peters F. 2013 Microstructure in sheared non-Brownian concentrated suspensions. J. Rheol. 57 (1), 273292.
Blanc F., Peters F. & Lemaire E. 2011a Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys. Rev. Lett. 107 (20), 208302.
Blanc F., Peters F. & Lemaire E. 2011b Local transient rheological behavior of concentrated suspensions. J. Rheol. 55 (4), 835854.
Blanc F., Peters F. & Lemaire E. 2011c Particle image velocimetry in concentrated suspensions: application to local rheometry. Appl. Rheol. 21, 23735.
Boyer F., Guazzelli É. & Pouliquen O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.
Breedveld V., van den Ende D., Jongschaap R. & Mellema J. 2001 Shear-induced diffusion and rheology of noncolloidal suspensions: time scales and particle displacements. J. Chem. Phys. 114 (13), 59235936.
Bricker J. M. & Butler J. E. 2006 Oscillatory shear of suspensions of noncolloidal particles. J. Rheol. 50 (5), 711728.
Bricker J. M. & Butler J. E. 2007 Correlation between stresses and microstructure in concentrated suspensions of non-Brownian spheres subject to unsteady shear flows. J. Rheol. 51 (4), 735759.
Cheng X., McCoy J. H., Israelachvili J. N. & Cohen I. 2011 Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333 (6047), 12761279.
Corte L., Chaikin P. M., Gollub J. P. & Pine D. J. 2008 Random organization in periodically driven systems. Nat. Phys. 4 (5), 420424.
Dbouk T., Lobry L. & Lemaire E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.
Gadala-Maria F. & Acrivos A. 1980 Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24 (6), 799814.
Gao C., Kulkarni S. D., Morris J. F. & Gilchrist J. F. 2010 Direct investigation of anisotropic suspension structure in pressure-driven flow. Phys. Rev. E 81 (4), 041403.
Hanotin C., de Richter S. K., Marchal P., Michot L. J. & Baravian C. 2012 Vibration-induced liquefaction of granular suspensions. Phys. Rev. Lett. 108 (19), 198301.
Happel J. & Brenner H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Kolli V. G., Pollauf E. J. & Gadala-Maria F. 2002 Transient normal stress response in a concentrated suspension of spherical particles. J. Rheol. 46 (1), 321334.
Lin Y., Phan-Thien N. & Khoo B. C. 2013 Short-term and long-term irreversibility in particle suspensions undergoing small and large amplitude oscillatory stress. J. Rheol. 57 (5), 13251346.
Mondy L. A., Graham A. L. & Jensen J. L. 1986 Continuum approximations and particle interactions in concentrated suspensions. J. Rheol. 30 (5), 10311052.
Morris J. F. 2009 A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48 (8), 909923.
Narumi T., See H., Honma Y., Hasegawa T., Takahashi T. & Phan-Thien N. 2002 Transient response of concentrated suspensions after shear reversal. J. Rheol. 46 (1), 295305.
Ovarlez G., Bertrand F., Coussot P. & Chateau X. 2012 Shear-induced sedimentation in yield stress fluids. J. Non-Newtonian Fluid Mech. 177, 1928.
Padhy S., Shaqfeh E. S. G., Iaccarino G., Morris J. F. & Tonmukayakul N. 2013 Simulations of a sphere sedimenting in a viscoelastic fluid with cross-shear flow. J. Non-Newtonian Fluid Mech. 197, 4860.
Park H.-O., Bricker J. M., Roy M. J. & Butler J. E. 2011 Rheology of oscillating suspensions of noncolloidal spheres at small and large accumulated strains. Phys. Fluids 23, 013302.
Parsi F. & Gadala-Maria F. 1987 Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J. Rheol. 31 (8), 725732.
Pine D. J., Gollub J. P., Brady J. F.. & Leshansky A. M. 2005 Chaos and threshold for irreversibility in sheared suspensions. Nature 438 (7070), 9971000.
Rampall I., Smart J. R. & Leighton D. T. 1997 The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J. Fluid Mech. 339, 124.
Reardon P. T., Graham A. L., Feng S., Chawla V., Admuthe R. S. & Mondy L. A. 2007 Non-Newtonian end effects in falling ball viscometry of concentrated suspensions. Rheol. Acta 46 (3), 413424.
Sierou A. & Brady J. F. 2002 Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46 (5), 10311056.
Stokes G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8.
Van den Brule B. H. A. A. & Gheissary G. 1993 Effects of fluid elasticity on the static and dynamic settling of a spherical particle. J. Non-Newtonian Fluid Mech. 49 (1), 123132.
Yeo K. & Maxey M. R. 2010 Dynamics of concentrated suspensions of non-colloidal particles in Couette flow. J. Fluid Mech. 649 (1), 205231.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Blanc supplementary material
Supplementary figure

 PDF (60 KB)
60 KB
Supplementary materials

Blanc supplementary material
Supplementary material

 PDF (48 KB)
48 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 262 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd February 2018. This data will be updated every 24 hours.