Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T11:05:16.480Z Has data issue: false hasContentIssue false

A two-phase thermomechanical theory for granular suspensions

Published online by Cambridge University Press:  02 November 2016

D. Monsorno
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium
C. Varsakelis
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium
M. V. Papalexandris*
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium
*
Email address for correspondence: miltos@uclouvain.be

Abstract

In this paper, a two-phase thermomechanical theory for granular suspensions is presented. Our approach is based on a mixture-theoretic formalism and is coupled with a nonlinear representation for the granular viscous stresses so as to capture the complex non-Newtonian behaviour of the suspensions of interest. This representation has a number of interesting properties: it is thermodynamically consistent, it is non-singular and vanishes at equilibrium and it predicts non-zero granular bulk viscosity and shear-rate-dependent normal viscous stresses. Another feature of the theory is that the resulting model incorporates a rate equation for the evolution of the volume fraction of the granular phase. As a result, the velocity fields of both the granular material and the carrier fluid are divergent even for constant-density flows. Further, in this article we present the incompressible limit of our model which is derived via low-Mach-number asymptotics. The reduced equations for the important special case of constant-density flows are also presented and discussed. Finally, we apply the proposed model to two test cases, namely, steady shear flow of a homogeneous suspension and fully developed pressure-driven channel flow, and compare its predictions with available experimental and numerical results.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkin, R. J. & Craine, R. E. 1976 Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Maths 29, 209244.CrossRefGoogle Scholar
Baer, M. R. & Nunziato, J. W. 1986 A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Intl J. Multiphase Flow 12, 861889.CrossRefGoogle Scholar
Barker, T., Schaeffer, D., Bohorquez, P. & Gray, J. 2015 Well-posed and ill-posed behaviour of the 𝜇(I)-rheology for granular flow. J. Fluid Mech. 779, 794818.Google Scholar
Bdzil, J. B., Menikoff, R., Son, S. F., Kapila, A. K. & Stewart, D. S. 1999 Two-phase modelling of deflagration-to-detonation transition in granular materials: a critical examination of modelling issues. Phys. Fluids 11, 378492.CrossRefGoogle Scholar
Bedeaux, D. & Rubi, J. M. 2002 Nonequilibrium thermodynamics of colloids. Physica A 305, 360370.CrossRefGoogle Scholar
Benyahia, S., Syamlal, M. & O’Brien, T. 2005 Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technol. 162, 166174.Google Scholar
Boyer, F., Guazzelli, E. & Pouliquen, O. 2011a Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.Google Scholar
Boyer, F., Pouliquen, O. & Guazzelli, E. 2011b Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686, 525.Google Scholar
Brady, J. F. 2001 Computer simulation of viscous suspensions. Chem. Engng Sci. 56, 29212926.Google Scholar
Brady, J. F. & Bossis, G. 1985 The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155, 105129.Google Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.Google Scholar
Brady, J. F. & Carpen, I. C. 2002 Second normal stress jump instability in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 102, 219232.CrossRefGoogle Scholar
Brady, J. F., Khair, A. S. & Swaroop, M. 2006 On the bulk viscosity of suspensions. J. Fluid Mech. 554, 109123.Google Scholar
Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103139.Google Scholar
Briggs, A., Wang, C. C. & Massoudi, M. 1999 Flow of a dense particulate mixture using a modified form of the mixture theory. Particul. Sci. Tech. 17, 127.Google Scholar
Carson, J. K., Lovatt, S. J., Tanner, D. J. & Cleland, A. C. 2005 Thermal conductivity bounds for isotropic, porous materials. Intl J. Heat Mass Tranfer 48, 21502158.Google Scholar
Chiodi, F., Claudin, P. & Andreotti, B. 2014 A two-phase flow model of sediment transport: transition from bedload to suspended load. J. Fluid Mech. 755, 561581.Google Scholar
Cochran, M. T. & Powers, J. M. 2008 Computation of compaction in compressible granular material. Mech. Res. Commun. 35, 96103.Google Scholar
Cowin, S. C. & Goodman, M. A. 1976 A variational principle for granular materials. ZAMM – J. Appl. Math. Mech. 56, 281286.Google Scholar
Da Cruz, F., Emam, S., Prochnow, M., Roux, J. N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulations of plane shear flows. Phys. Rev. E 72, 021309.Google Scholar
Dbouk, T., Lobry, L. & Lemaire, E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.Google Scholar
Deledicque, V. & Papalexandris, M. V. 2007 An exact Riemann solver for compressible two-phase flow models containing non-conservative products. J. Comput. Phys. 222, 217245.Google Scholar
Denn, M. M. & Morris, J. F. 2014 Rheology of non-brownian suspensions. Annu. Rev. Chem. Biomol. Eng. 5, 203228.Google Scholar
Drew, A. D. & Passman, S. L. 1999 Theory of Multicomponent Fluids. Springer.Google Scholar
Dunn, J. E. & Serrin, J. B. 1985 On the thermo-mechanics of interstitial working. Arch. Rat. Mech. Anal. 88, 95133.Google Scholar
Elban, W. L. & Chiarito, M. A. 1986 Quasi-static compaction study of coarse HMX explosive. Powder Technol. 46, 181193.Google Scholar
Fang, C., Wang, Y. & Hutter, K. 2006 A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Contin. Mech. Thermodyn. 17, 577607.CrossRefGoogle Scholar
Fang, Z., Mammoli, A., Brady, J. F., Ingber, M., Mondy, L. & Graham, A. 2002 Flow-aligned tensor models for suspension flows. Intl J. Multiphase Flow 28, 137166.Google Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.Google Scholar
Foss, D. R. & Brady, J. F. 2000 Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation. J. Fluid Mech. 407, 167200.Google Scholar
Frith, W. J., Mewis, J. & Strivens, T. A. 1987 Rheology of concentrated suspensions: experimental investigations. Powder Technol. 51, 2734.CrossRefGoogle Scholar
Gao, C., Kulkarni, S. D., Morris, J. F. & Gilchrist, J. F. 2010 Direct investigation of anisotropic suspension structure in pressure-driven flow. Phys. Rev. E 81, 041403.Google ScholarPubMed
Gao, C., Xu, B. & Gilchrist, J. F. 2009 Mixing and segregation of microspheres in microchannels flows of mono- and bidispersed suspensions. Phys. Rev. E 79, 036311.Google ScholarPubMed
Goddard, J. D. 2006 A dissipative anisotropic fluid model for non-colloidal particle dispersions. J. Fluid Mech. 568, 117.Google Scholar
Goodman, M. A. & Cowin, S. C. 1972 A continuum theory for granular materials. Arch. Rat. Mech. Anal. 44, 249266.Google Scholar
Gough, P. S. & Zwarts, F. J. 1979 Modeling heterogeneous two-phase reacting flow. AIAA J. 17, 1725.Google Scholar
Gray, J. M. N. T. & Edwards, A. N. 2014 A depth-averaged 𝜇(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503534.Google Scholar
Hampton, R. E., Mammoli, A. A., Graham, A. L., Tetlow, N. & Altobelli, S. A. 1997 Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41, 621640.Google Scholar
Henann, D. K. & Kamrin, K. 2013 A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110, 67306735.CrossRefGoogle ScholarPubMed
Henann, D. L. & Kamrin, K. 2014 Continuum thermomechanics of the nonlocal granular rheology. Int. J. Plast. 60, 145162.Google Scholar
Hinch, E. J. 2011 The measurement of suspension rheology. J. Fluid Mech. 686, 14.Google Scholar
Hinrichsen, H. & Wolf, D. E. 2004 The Physics of Granular Media. Wiley-VCH.Google Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.CrossRefGoogle ScholarPubMed
Josserand, C., Lagrée, P.-Y. & Lhuillier, D. 2004 Stationary shear flows of dense granular materials: a tentative continuum modelling. Eur. Phys. J. E 14, 127135.Google Scholar
Josserand, C., Lagrée, P.-Y. & Lhuillier, D. 2006 Granular pressure and the thickness of a layer jamming on a rough incline. Europhys. Lett. 73, 363.CrossRefGoogle Scholar
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301.Google Scholar
Karnis, A., Goldsmith, H. L. & Mason, S. G. 1966 The kinetics of flowing dispersions: I. Concentrated suspensions of rigid particles. J. Colloid Interface Sci. 22, 531553.Google Scholar
Kirchner, N. 2002 Thermodynamically consistent modelling of abrasive granular materials. I. Non-equilibrium theory. Proc. R. Soc. Lond. A 458, 201520176.Google Scholar
Koh, C. J., Hookham, P. & Leal, L. G. 1994 An experimental investigation of concentrated suspension flows in a rectangular channel. J. Fluid Mech. 266, 132.Google Scholar
Krier, H. & Gokhale, S. S. 1978 Modeling of convective mode combustion through granulated propellant to predict detonation transition. AIAA J. 16, 177183.Google Scholar
Lagrée, P.-Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a 𝜇(I)-rheology. J. Fluid Mech. 686, 378408.Google Scholar
Lebon, D. G., Jou, D. & Casas-Vázquez, J. 2008 Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers. Springer.CrossRefGoogle Scholar
Lefebvre-Lepot, A., Merlet, B. & Nguyen, T. N. 2015 An accurate method to include lubrication forces in numerical simulations of dense Stokesian suspensions. J. Fluid Mech. 769, 369386.Google Scholar
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.Google Scholar
Lhuillier, D. 2001 Internal variables and the non-equilibrium thermodynamics of colloidal suspensions. J. Non-Newtonian Fluid Mech. 96, 1930.Google Scholar
Lyon, M. K. & Leal, L. G. 1998 An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems. J. Fluid Mech. 363, 2556.Google Scholar
Massoudi, M. 2004 Constitutive modeling of flowing granular materials: a continuum approach. In Granular Materials: Fundamentals and Applications (ed. Antony, S. J., Hoyle, W. & Ding, Y.), pp. 63107. The Royal Society of Chemistry.Google Scholar
Massoudi, M. 2011 A generalization of Reiner’s mathematical model for wet sand. Mech. Res. Commun. 38, 378381.Google Scholar
Massoudi, M. & Mehrabadi, M. M. 2001 A continuum model for granular materials: considering dilatancy and the Mohr–Coulomb criterion. Acta Mech. 152, 121138.Google Scholar
Massoudi, M. & Tran, P. X. 2016 The Couette–Poiseuille flow of a suspension modeled as a modified third-grade fluid. Arch. Appl. Mech. 86, 921932.Google Scholar
Mesri, G. & Vardhanabhuti, B. 2009 Compression of granular materials. Can. Geotech. J. 46, 369392.Google Scholar
Mewis, J. & Wagner, N. J. 2009 Current trends in suspension rheology. J. Non-Newtonian Fluid Mech. 157, 147150.Google Scholar
Midi, G. D. R. 2004 On dense granular flow. Eur. Phys. J. E 14, 341365.Google Scholar
Moraczewski, T., Tang, H. & Shapley, N. C. 2005 Flow of concentrated suspensions through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging. J. Rheol. 49, 14091428.Google Scholar
Morris, J. F. 2009 A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48, 909923.Google Scholar
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43, 12131237.Google Scholar
Mueller, S., Llewellin, E. W. & Mader, H. M. 2009 The rheology of suspensions of solid particles. Proc. R. Soc. Lond. A 466, 12011228.Google Scholar
Nott, P. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.Google Scholar
Ovarlez, G., Bertrand, F. & Rodts, S. 2006 Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J. Rheol. 50, 259292.Google Scholar
Pabst, W., Gregorova, E. & Berthold, C. 2006 Particle shape and suspension rheology of short-fiber systems. J. Eur. Ceram. Soc. 26, 149160.Google Scholar
Papalexandris, M. V. 2004a Numerical simulation of detonations in mixtures of gases and solid particles. J. Fluid Mech. 507, 95142.Google Scholar
Papalexandris, M. V. 2004b A two-phase model for compressible granular flows based on the theory of irreversible processes. J. Fluid Mech. 517, 103112.Google Scholar
Passman, S. L., Nunziato, J. W., Bailey, P. B. & Reed, K. 1986 Shearing motion of a fluid-saturated granular material. J. Rheol. 20, 167192.Google Scholar
Phan-Thien, N. 1995 Constitutive equation for concentrated suspensions in Newtonian liquids. J. Rheol. 39, 679695.CrossRefGoogle Scholar
Phung, T. N., Brady, J. F. & Bossis, G. 1996 Stokesian dynamics simulation of Brownian suspensions. J. Fluid Mech. 313, 181207.Google Scholar
Powers, J. M. 2004 Two-phase viscous modeling of compaction of granular materials. Phys. Fluids 16, 29752990.Google Scholar
Revil-Baudard, T. & Chauchat, J. 2013 A two-phase model for sheet flow regime based on dense granular flow rheology. J. Geophys. Res. 118, 619634.Google Scholar
Samantray, P. K., Karthikeyan, P. & Reddy, K. S. 2006 Estimating effective thermal conductivity of two-phase materials. Intl J. Heat Mass Transfer 49, 42094219.Google Scholar
Savage, S. B. 1979 Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 5396.CrossRefGoogle Scholar
Sierou, A. & Brady, J. F. 2002 Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46, 10311056.Google Scholar
Singh, A. & Nott, P. R. 2003 Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech. 490, 293320.CrossRefGoogle Scholar
Soltani, F. & Yilmazer, Ü. 1998 Slip velocity and slip layer thickness in flow of concentrated suspensions. J. Appl. Polym. Sci. 70, 515522.Google Scholar
Stickel, J. J., Phillips, R. J. & Powell, R. L. 2006 A constitutive model for microstructure and total stress in particulate suspensions. J. Rheol. 50, 379413.Google Scholar
Stickel, J. J., Phillips, R. J. & Powell, R. L. 2007 Application of a constitutive model for particulate suspensions: time-dependent viscometric flows. J. Rheol. 51, 12711302.Google Scholar
Stickel, J. J. & Powell, R. L. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129149.CrossRefGoogle Scholar
Stuhmiller, J. H. 1977 The influence of interfacial pressure forces on the character of two-phase flow model equations. Intl J. Multiphase Flow 3, 551560.Google Scholar
Svendsen, B. & Hutter, K. 1995 On the thermodynamics of a mixture of isotropic materials with constraints. Intl J. Engng Sci. 33, 20212054.Google Scholar
Truesdell, C. & Noll, W. 2004 The Non-Linear Field Theories of Mechanics. Springer.Google Scholar
Trulsson, M., Andreotti, B. & Claudin, P. 2012 Transition from viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109, 118305.CrossRefGoogle ScholarPubMed
Ván, P. 2004 Weakly nonlocal continuum theories of granular media: restrictions from the second law. Intl J. Solids Struct. 41, 59215927.Google Scholar
Varsakelis, C., Monsorno, D. & Papalexandris, M. V. 2015 Projection methods for two velocity-two pressure models for flows of heterogeneous mixtures. Comput. Maths Applics. 70, 10241045.Google Scholar
Varsakelis, C. & Papalexandris, M. V. 2011 Low-Mach-number asymptotics for two-phase flows of granular materials. J. Fluid Mech. 669, 472497.Google Scholar
Varsakelis, C. & Papalexandris, M. V. 2014 A numerical method for two-phase flows of dense granular mixtures. J. Comput. Phys. 257, 737756.Google Scholar
Varsakelis, C. & Papalexandris, M. V. 2016 Stability of wall bounded, shear flows of dense granular materials: the role of the Couette gap, the wall velocity and the initial concentration. J. Fluid Mech. 791, 384413.Google Scholar
Varsakelis, C. & Papalexandris, M. V. 2017 On the relevance of low-Mach-number asymptotics in thermodynamics of heterogeneous immiscible mixtures. J. Non-Equilib. Thermodyn. (in press) doi:10.1515/jnet-2016-0003.Google Scholar
Wallis, G. B. 1969 One-Dimensional Two-Phase Flow. McGraw-Hill.Google Scholar
Wang, Y. & Hutter, K. 1999a A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures. Granul. Matt. 73, 163181.Google Scholar
Wang, Y. & Hutter, K. 1999b A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta 38, 214223.Google Scholar
Wang, Y. & Hutter, K. 1999c Shearing flows in a Goodman–Cowin type granular material – theory and numerical results. Particul. Sci. Technol. 17, 97124.Google Scholar
Yeo, K. & Maxey, M. 2011 Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow. J. Fluid Mech. 682, 491518.Google Scholar
Yurkovetsky, Y. & Morris, J. F. 2008 Particle pressure in sheared Brownian suspensions. J. Rheol. 52, 141164.Google Scholar
Zarraga, I. E., Hill, D. A. & Leighton, D. T. 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44, 185220.Google Scholar