Skip to main content
    • Aa
    • Aa

Ultra-fast escape of a deformable jet-propelled body

  • G. D. Weymouth (a1) and M. S. Triantafyllou (a2)

In this work a cephalopod-like deformable body that fills an internal cavity with fluid and expels it to propel an escape manoeuvre, while undergoing a drastic external shape change through shrinking, is shown to employ viscous as well as mainly inviscid hydrodynamic mechanisms to power an impressively fast start. First, we show that recovery of added-mass energy enables a shrinking rocket in a dense inviscid flow to achieve greater escape speed than an identical rocket in a vacuum. Next, we extend the shrinking body results of Weymouth & Triantafyllou (J. Fluid Mech., vol. 702, 2012, pp. 470–487) to three-dimensional bodies and show that three hydrodynamic mechanisms must be combined to achieve rapid escape performance in a viscous fluid: added-mass energy recovery; flow separation elimination; and an optimized energy storage and recovery. In particular, we show that the mechanism of separation elimination achieved through rapid body shrinking, coordinated with the mechanism of recovering the initially imparted added-mass energy, is critical to achieving a high escape speed. Hence a flexible, collapsing body can be vastly superior to a rigid-shell jet-propelled body.

Corresponding author
Email addresses for correspondence:,
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E. J. Anderson & M. A. Grosenbaugh 2005 Jet flow in steadily swimming adult squid. J. Expl Biol. 208, 11251146.

E. J. Anderson , W Wuinn & M. E. deMont 2001 Hydrodynamics of locomotion in the squid Loligo pealei. J. Fluid Mech. 436, 249266.

I. K. Bartol , P. S. Krueger , J. T. Thompson & W. J. Stewart 2009 Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers. J. Expl Biol. 212, 15061518.

S. Childress , N. Vanderberghe & J. Zhang 2006 Hovering of a passive body in an oscillating airflow. Phys. Fluids 18, 117103.

J. O. Dabiri , S. P. Colin & J. H. Costello 2006 Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake. J. Expl Biol. 209, 20252033.

T. L. Daniel 1984 Unsteady aspects of aquatic locomotion. Am. Zool. 24 (1), 121134.

P. Domenici , J. M. Blagburn & J. P. Bacon 2011a Animal escapology I: theoretical issues and emerging trends in escape trajectories. J. Expl Biol. 214, 24632473.

P. Domenici , J. M. Blagburn & J. P. Bacon 2011b Animal escapology II: escape trajectory case studies. J. Expl Biol. 214, 24742494.

J. M. Gosline & M. E. DeMont 1985 Jet-propelled swimming in squid. Sci. Am. 252, 96103.

C. L. Huffard 2006 Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J. Expl Biol. 209, 36973707.

E. Kanso , J. E. Marsden , C. W. Rowley & J. B. Melli-Huber 2005 Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 15, 255289.

P. F. Linden & J. S. Turner 2004 Optimal vortex rings and aquatic propulsion mechanisms. Proc. R. Soc. Lond. B 271, 647653.

L. G. Margolin , W. J. Rider & F. F. Grinstein 2006 Modeling turbulent flow with implicit LES. J Turbul 7, 127.

A. Moslemi & P. S. Krueger 2011 The effect of Reynolds number on the propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinsp. Biomim. 6, 026001.

A. Packard 1969 Jet propulsion and the giant fibre response of Loligo. Nature 221, 875877.

S. E. Spagnolie & M. J. Shelley 2009 Shapechanging bodies in fluid: hovering, ratcheting, and bursting. Phys. Fluids 21, 013103.

M. J. Wells 1990 Oxygen extraction and jet propulsion in Cephalopods. Can. J. Zool. 68, 815824.

G. D. Weymouth & D. K.-P. Yue 2011 Boundary data immersion method for Cartesian-grid simulations of fluid-body interaction problems. J. Comput. Phys. 230, 16.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 164 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2017. This data will be updated every 24 hours.