Skip to main content Accessibility help

Vortex–leading-edge interaction

  • Samir Ziada (a1) (a2) and Donald Rockwell (a1)

Visualization of successive vortices impinging upon the leading edge of a wedge reveals patterns of deformation of each incident vortex; for certain offsets of the edge with respect to the incident vortex there is pronounced vortex shedding from the leading edge, whereby the shed vortex has a vorticity orientation opposite to that of the incident vortex.

Simultaneous consideration of this visualization interaction and the force induced on the wedge gives the relation between the nature of the interaction mechanism and the relative magnitude and phase of the force exerted on the wedge. The amplitude of the induced force is found to be a strong function of the transverse offset of the leading edge with respect to the incident vortex and the degree of vorticity shedding from the leading edge. Application of Stuart's vortex model to the incident vortices provides a means for approximating the phase and relative amplitude of the induced force as a function of the transverse offset of the leading edge.

Hide All
Conlisk, T. & Rockwell, D. 1981 Modelling of vortex-corner interaction using point vortices. Submitted for publication.
Crighton, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aero. Sci. 16, 31.
Robertson, J. M. 1965 Hydrodynamics in Theory and Application. Prentice-Hall.
Rockwell, D. & Knisely, C. 1979 The organized nature of flow impingement upon a corner. J. Fluid Mech. 93, 413.
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11, 67.
Rogler, H. 1974 A mechanism of vorticity segregation. Bull. Am. Phys. Soc. Ser. II, 19, 1165.
Rogler, H. 1978 The interaction between vortex-array representations of free-stream turbulence and semi-infinite flat plates. J. Fluid Mech. 87, 3, 583.
Stuart, J. T. 1967 On finite amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417.
Ziada, S. 1981 Self sustained oscillations of a mixing layer-edge system. Ph.D. dissertation, Mech. Engng Dept, Lehigh University.
Ziada, S. & Rockwell, D. 1981 Oscillations of an unstable mixing layer impinging upon an edge. Submitted for publication.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed