Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-bjz6k Total loading time: 0.287 Render date: 2022-05-22T14:55:22.186Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Water colliding with oil

Published online by Cambridge University Press:  29 June 2012

David Quéré*
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, ESPCI, 75005 Paris, France and Departments of Mechanics and Physics, École polytechnique, 91120 Palaiseau, France
*
Email address for correspondence: david.quere@espci.fr
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The collision of two liquid drops is both an applied question (in rain formation or combustion, for example) and a beautiful basic situation, where impact involves liquid phases, making this problem worth studying in its own right. In a stimulating paper, Planchette, Lorenceau & Brenn (J. Fluid Mech., this issue, vol. 702, 2012, pp. 5–25) consider collisions between oil and water, which often lead to water drops protected by a shell of oil. By looking at the deformations during impact, they characterize the dynamical conditions leading to single encapsulation, and derive a criterion for avoiding fragmentation.

Type
Focus on Fluids
Copyright
Copyright © Cambridge University Press 2012

References

1. Ashgriz, N. & Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183204.CrossRefGoogle Scholar
2. Brazier-Smith, P. R., Jennings, S. G. & Latham, J. 1972 The interaction of falling water drops: coalescence. Proc. R. Soc. Lond. A 326, 393408.CrossRefGoogle Scholar
3. Chandra, S. & Avedisian, C. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.CrossRefGoogle Scholar
4. Couder, Y., Fort, E., Gautier, C. H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801.CrossRefGoogle ScholarPubMed
5. Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.CrossRefGoogle Scholar
6. Jiang, Y. J., Umemura, A. & Law, C. K. 1992 An experimental investigation on the collision behaviour of hydrocarbon droplets. J. Fluid Mech. 234, 171190.CrossRefGoogle Scholar
7. Planchette, C., Lorenceau, E. & Brenn, G. 2012 The onset of fragmentation in binary liquid drop collisions. J. Fluid Mech. 702, 525.CrossRefGoogle Scholar
8. Tang, C., Zhang, P. & Law, C. K. 2012 Bouncing, coalescence, and separation in head-on collision of unequal-size droplets. Phys. Fluids 24, 022101.CrossRefGoogle Scholar
9. Worthington, A. M. 1895 The Splash of a Drop. Society for Promoting Christian knowledge.Google Scholar
10. Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.CrossRefGoogle ScholarPubMed
11. Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
You have Access
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Water colliding with oil
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Water colliding with oil
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Water colliding with oil
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *