Skip to main content
×
×
Home

Water wave overwash of a step

  • D. M. Skene (a1), L. G. Bennetts (a1), M. Wright (a2), M. H. Meylan (a3) and K. J. Maki (a2)...
Abstract

Water wave overwash of a step by small steepness, regular incident waves is analysed using a computational fluid dynamics (CFD) model and a mathematical model, in two spatial dimensions. The CFD model is based on the two-phase, incompressible Navier–Stokes equations, and the mathematical model is based on the coupled potential-flow and nonlinear shallow-water theories. The CFD model is shown to predict vortices, breaking and overturning in the region where overwash is generated, and that the overwash develops into fast-travelling bores. The mathematical model is shown to predict bore heights and velocities that agree with the CFD model, despite neglecting the complicated dynamics where the overwash is generated. Evidence is provided to explain the agreement in terms of the underlying agreement of mass and energy fluxes.

Copyright
Corresponding author
Email address for correspondence: david.skene@adelaide.edu.au
References
Hide All
Bai, W., Zhang, T. & McGovern, D. J. 2017 Response of small sea ice floes in regular waves: a comparison of numerical and experimental results. Ocean Engng 129, 495506.
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics, 2nd edn. Cambridge University Press.
Bennetts, L. G., Alberello, A., Meylan, M. H., Cavaliere, C., Babanin, A. V. & Toffoli, A. 2015 An idealised experimental model of ocean surface wave transmission by an ice floe. Ocean Model. 96, 8592.
Bennetts, L. G. & Squire, V. A. 2012 On the calculation of an attenuation coefficient for transects of ice-covered ocean. Proc. R. Soc. Lond. A 468, 136162.
Bennetts, L. G. & Williams, T. D. 2015 Water wave transmission by an array of floating disks. Proc. R. Soc. Lond. A 471, 2014069.
Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79 (3), 036306.
Billingham, J. & King, A. C. 2000 Wave Motion. Cambridge University Press.
Buchner, B.2002 Green water on ship-type offshore structures. PhD thesis, Delft University of Technology.
Chanson, H. 2009 Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. (B/Fluids) 28 (2), 191210.
Gottlieb, S. & Shu, C. W. 1998 Total variation diminishing Runge–Kutta schemes. Math. Comput. 67 (221), 7385.
Greco, M.2001 A two-dimensional study of green-water loading. PhD thesis, Norwegian University of Science and Technology.
Greco, M., Colicchio, G. & Faltinsen, O. M. 2007 Shipping of water on a two-dimensional structure. Part 2. J. Fluid Mech. 581, 371399.
Greco, M., Faltinsen, O. M. & Landrini, M. 2005 Shipping of water on a two-dimensional structure. J. Fluid Mech. 525, 309332.
Higuera, P., Lara, J. L. & Losada, I. J. 2013a Realistic wave generation and active wave absorption for Navier–Stokes models: application to OpenFOAM® . Coast. Engng 71, 102118.
Higuera, P., Lara, J. L. & Losada, I. J. 2013b Simulating coastal engineering processes with OpenFOAM® . Coast. Engng 71, 119134.
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid method for the dynamic of free boundaries. J. Comput. Phys. 39, 323345.
Jacobsen, N. G., Fuhrman, D. R. & Fredsøe, J. 2012 A wave generation toolbox for the open-source CFD library: OpenFoam® . Intl J. Numer. Meth. Fluids 70 (9), 10731088.
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160 (1), 241282.
McGovern, D. J. & Bai, W. 2014 Experimental study on kinematics of sea ice floes in regular waves. Cold Reg. Sci. Technol. 103, 1530.
Meylan, M. H., Bennetts, L. G., Cavaliere, C., Alberello, A. & Toffoli, A. 2015 Experimental and theoretical models of wave-induced flexure of a sea ice floe. Phys. Fluids 27 (4), 041704.
Mills, A. F. 1999 Heat Transfer, 2nd edn. Prentice-Hall.
Mizoguchi, S. 1988 Analysis of shipping water with the experiments and the numerical calculations. J. Soc. Nat. Nav. Archit. Japan 27, 8391.
Montiel, F., Bennetts, L. G., Squire, V. A., Bonnefoy, F. & Ferrant, P. 2013a Hydroelastic response of floating elastic disks to regular waves. Part 2. Modal analysis. J. Fluid Mech. 723, 629652.
Montiel, F., Bonnefoy, F., Ferrant, P., Bennetts, L. G., Squire, V. A. & Marsault, P. 2013b Hydroelastic response of floating elastic disks to regular waves. Part 1. Wave tank experiments. J. Fluid Mech. 723, 604628.
Nelli, F., Bennetts, L. G., Skene, D. M., Monty, J. P., Lee, J. H., Meylan, M. H. & Toffoli, A. 2017 Reflection and transmission of regular water waves by a thin, floating plate. Wave Motion 70, 209221.
Nielsen, K. B. & Mayer, S. 2004 Numerical prediction of green water incidents. Ocean Engng 31 (3), 363399.
Paulsen, B. T., Bredmose, H., Bingham, H. B. & Jacobsen, N. G. 2014 Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth. J. Fluid Mech. 755, 134.
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory, 9th edn. Springer.
Skene, D. M., Bennetts, L. G., Meylan, M. H. & Toffoli, A. 2015 Modelling water wave overwash of a thin floating plate. J. Fluid Mech. 777, R3.
Sree, D. K. K., Law, A. W.-K. & Shen, H. H. 2017 An experimental study on the interactions between surface waves and floating viscoelastic covers. Wave Motion 70, 195208.
Toffoli, A., Bennetts, L. G., Meylan, M. H., Cavaliere, C., Alberello, A., Elsnab, J. & Monty, J. P. 2015 Sea ice floes dissipate the energy of steep ocean waves. Geophys. Res. Lett. 42, 18.
Vreugdenhil, C. B. 1994 Numerical Methods for Shallow-Water Flow. Kluwer Academic.
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.
Whitham, G. B. 1962 Mass, momentum and energy flux in water waves. J. Fluid Mech. 12 (1), 135147.
Yiew, L. J., Bennetts, L. G., Meylan, M. H., French, B. J. & Thomas, G. A. 2016 Hydrodynamic responses of a thin floating disk to regular waves. Ocean Model. 97, 5264.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed