We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Email your librarian or administrator to recommend adding this journal to your organisation's collection.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We investigate global instability and vortex shedding in the separated laminar boundary layer beneath internal solitary waves (ISWs) of depression in a two-layer stratified fluid by performing high-resolution two-dimensional direct numerical simulations. The simulations were conducted with waves propagating over a flat bottom and shoaling over relatively mild and steep slopes. Over a flat bottom, the potential for vortex shedding is shown to be directly dependent on wave amplitude, for a particular stratification, owing to increase of the adverse pressure gradient ( for leftward propagating waves) beneath the trailing edge of larger amplitude waves. The generated eddies can ascend from the bottom boundary to as high as 33 % of the total depth in two-dimensional simulations. Over sloping boundaries, global instability occurs beneath all waves as they steepen. For the slopes considered, vortex shedding begins before wave breaking and the vortices, shed from the bottom boundary, can reach the pycnocline, modifying the wave breaking mechanism. Combining the results over flat and sloping boundaries, a unified criterion for vortex shedding in arbitrary two-layer continuous stratifications is proposed, which depends on the momentum-thickness Reynolds number and the non-dimensionalized ISW-induced pressure gradient at the point of separation. The criterion is generalized to a form that may be readily computed from field data and compared to published laboratory experiments and field observations. During vortex shedding events, the bed shear stress, vertical velocity and near-bed Reynolds stress were elevated, in agreement with laboratory observations during re-suspension events, indicating that boundary layer instability is an important mechanism leading to sediment re-suspension.
We investigate the statistical properties of Rayleigh–Taylor turbulence in a three-dimensional convective cell of high aspect ratio, in which one transverse side is much smaller that the others. By means of high-resolution numerical simulation we study the development of the turbulent mixing layer and the scaling properties of the velocity and temperature fields. We show that the system undergoes a transition from a three- to two-dimensional turbulent regime when the width of the turbulent mixing layer becomes larger than the scale of confinement. In the late stage of the evolution the convective flow is characterized by the coexistence of Kolmogorov–Obukhov and Bolgiano–Obukhov scaling at small and large scales, respectively. These regimes are separated by the Bolgiano scale, which is determined by the scale of confinement of the flow. Our results show that the emergence of the Bolgiano–Obukhov scaling in Rayleigh–Taylor turbulence is connected to the onset of an upscale energy transfer induced by the geometrical constraint of the flow.
We investigate the behaviour of linear plane waves in multilayer shallow water equations that include a complete treatment of the Coriolis force. These equations improve upon the conventional shallow water equations, based on the traditional approximation, that include only the part of the Coriolis force due to the locally vertical component of the rotation vector. Including the complete Coriolis force leads to dramatic changes in the structure of long linear plane waves. It allows subinertial waves to exist with frequencies below the inertial frequency, the minimum frequency for which waves exist under the traditional approximation. These subinertial waves are characterized by a distinguished limit in which the horizontal pressure gradient becomes comparable to the upwellings and downwellings driven by the non-traditional Coriolis term in the vertical momentum equation. The subinertial waves connect wave modes that remain separate in the conventional multilayer shallow water equations, such as the surface and internal waves in a two-layer system. Eastward-propagating surface waves in a two-layer system connect with westward-propagating internal waves, and vice versa, via the long subinertial waves. The long subinertial waves cannot be classified as either surface or internal waves, due to the phase difference between the disturbances to the interfaces in these waves.
We consider the transition between the steady vertical path and the oscillatory path of two-dimensional bodies moving under the effect of buoyancy in a viscous fluid. Linearization of the Navier–Stokes equations governing the flow past the body and of Newton’s equations governing the body dynamics leads to an eigenvalue problem, which is solved numerically. Three different body geometries are then examined in detail, namely a quasi-infinitely thin plate, a plate of rectangular cross-section with an aspect ratio of 8, and a rod with a square cross-section. Two kinds of eigenmodes are observed in the limit of large body-to-fluid mass ratios, namely ‘fluid’ modes identical to those found in the wake of a fixed body, which are responsible for the onset of vortex shedding, and four additional ‘aerodynamic’ modes associated with much longer time scales, which are also predicted using a quasi-static model introduced in a companion paper. The stability thresholds are computed and the nature of the corresponding eigenmodes is investigated throughout the whole possible range of mass ratios. For thin bodies such as a flat plate, the Reynolds number characterizing the threshold of the first instability and the associated Strouhal number are observed to be comparable with those of the corresponding fixed body. Other modes are found to become unstable at larger Reynolds numbers, and complicated branch crossings leading to mode switching are observed. On the other hand, for bluff bodies such as a square rod, two unstable modes are detected in the range of Reynolds number corresponding to wake destabilization. For large enough mass ratios, the leading mode is similar to the vortex shedding mode past a fixed body, while for smaller mass ratios it is of a different nature, with a Strouhal number about half that of the vortex shedding mode and a stronger coupling with the body dynamics.
Granular materials segregate by size when sheared, which increases the destructive power in avalanches and causes demixing in industrial flows. Here we present a concise theory to describe this phenomenon for systems that for the first time include particles of arbitrary size. The evolution of the grainsize distribution during flow is described based on mass and momentum conservation. The theory is derived in a five-dimensional space, which besides position and time, includes a grainsize coordinate. By coupling the theory with a simple constitutive law we predict the kinematics of the flow, which depends on the grainsize dynamics. We show that the underpinning mechanism controlling segregation is a stress variation with grainsize. The theory, solved by a finite difference scheme, is found to predict the dynamics of segregation consistent with results obtained from discrete element simulations of polydisperse granular flow down inclined planes. Moreover, when applied to bimixtures, the general polydisperse theory reveals the role of grainsize contrast.
A vertically moving boundary in a stratified fluid can create and maintain a horizontal density gradient, or vertical layering of density, through the mechanism of viscous entrainment. Experiments to study the evolution and stability of axisymmetric flows with vertically layered density are performed by towing a narrow fibre upwards through a stably stratified viscous fluid. The fibre forms a closed loop and thus its effective length is infinite. A layer of denser fluid is entrained and its thickness is measured by implementing tracking analysis of dyed fluid images. Thickness values of up to 70 times that of the fibre are routinely obtained. A lubrication model is developed for both a two-dimensional geometry and the axisymmetric geometry of the experiment, and shown to be in excellent agreement with dynamic experimental measurements once subtleties of the optical tracking are addressed. Linear stability analysis is performed on a family of exact shear solutions, using both asymptotic and numerical methods in both two dimensions and the axisymmetric geometry of the experiment. It is found analytically that the stability properties of the flow depend strongly on the size of the layer of heavy fluid surrounding the moving boundary, and that the flow is neutrally stable to perturbations in the large-wavelength limit. At the first correction of this limit, a critical layer size is identified that separates stable from unstable flow configurations. Surprisingly, in all of the experiments the size of the entrained layer exceeds the threshold for instability, yet no unstable behaviour is observed. This is a reflection of the small amplification rate of the instability, which leads to growth times much longer than the duration of the experiment. This observation illustrates that for finite times the hydrodynamic stability of a flow does not necessarily correspond to whether or not that flow can be realised from an initial-value problem. Similar instabilities that are neutral to leading order with respect to long waves can arise under the different physical mechanism of viscous stratification, as studied by Yih (J. Fluid Mech., vol. 27, 1967, pp. 337–352), and we draw a comparison to that scenario.
The dynamics of the orientations of prolate ellipsoids in general linear shear flow is considered. The motivation behind this work is to gain a better understanding of the motion and the orientation probability distribution of ice particles in clouds in order to improve the modelling of their collision. The evolution of the orientations is governed by the Jeffery equation. It is shown that the possible attractors of this equation are fixed points, limit cycles and an infinite set of periodic solutions, named Jeffery orbits, in the case of simple shear. Linear stability analysis shows that the existence and the stability of the attractors are determined by the eigenvalues of the linear part of the equation. If the eigenvalues possess a non-vanishing real part, then there always exists either a stable fixed point or a stable limit cycle. Pure imaginary eigenvalues lead to Jeffery orbits. The convergence to a stable fixed point or to a stable limit cycle may either be monotonic or may be retarded due to the occurrence of non-normal growth. If non-normal growth occurs the convergence rate may be much slower compared with the characteristic time scale of the shear. Expressions for the characteristic time scale of convergence to the stable solutions are derived. In the case of non-normal growth, expressions are derived for the delay in the convergence. The orientation probability distribution function (p.d.f.) is computed via the solution of the Fokker–Planck equation. The p.d.f. is either periodic, in the case of simple shear (pure imaginary eigenvalues), or it converges to singular points or strips in the orientation space (fixed points and limit cycles) on which it grows to infinity. Time-independent p.d.f.s exist only for imaginary eigenvalues. Unlike the case where Brownian diffusion is present, the steady solutions are not unique and depend on the initial conditions.
Although the acoustic analogy developed by Lighthill, Curle, and Ffowcs Williams and Hawkings for sound generation by unsteady flow past solid surfaces is formally exact, it has become accepted practice in aeroacoustics to use an approximate version in which viscous quadrupoles are neglected. Here we show that, when sound is radiated by non-rigid surfaces, and the smallest dimension is comparable to or less than the viscous penetration depth, neglect of the viscous-quadrupole term can cause large errors in the sound field. In addition, the interpretation of the viscous quadrupoles as contributing only to sound absorption is shown to be inaccurate. Comparisons are made with the scalar wave equation for linear waves in a viscous fluid, which is extended using generalized functions to describe the effects of solid surfaces. Results are also presented for two model problems, one in a half-space and one with simple cylindrical geometry, for which analytical solutions are available.
We examine the stability of the ‘coast’ motion of fish, that is to say, the motion of a neutrally buoyant fish at constant speed in a straight line. The forces and moments acting on the fish body are thus perfectly balanced. The fish motion is said to be unstable if a perturbation in the conditions surrounding the fish results in forces and moments that tend to increase the perturbation, and it is stable if these emerging forces tend to reduce the perturbation and return the fish to its original state. Stability may be achieved actively or passively. Active stabilization requires neurological control that activates musculo-skeletal components to compensate for the external perturbations acting against stability. Passive stabilization on the other hand requires no energy input by the fish and is dependent upon the fish morphology, i.e. geometry and elastic properties. In this paper, we use a deformable body consisting of an articulated body equipped with torsional springs at its hinge joints and submerged in an unbounded perfect fluid as a simple model to study passive stability as a function of the body geometry and spring stiffness. We show that for given body dimensions, the spring elasticity, when properly chosen, leads to passive stabilization of the (otherwise unstable) coast motion.
This paper presents an analytic expression for the acoustic eigenmodes of a cylindrical lined duct with rigid axially running splices in the presence of flow. The cylindrical duct is considered to be uniformly lined except for two symmetrically positioned axially running rigid liner splices. An exact analytic expression for the acoustic pressure eigenmodes is given in terms of an azimuthal Fourier sum, with the Fourier coefficients given by a recurrence relation. Since this expression is derived using a Green’s function method, the completeness of the expansion is guaranteed. A numerical procedure is described for solving this recurrence relation, which is found to converge exponentially with respect to number of Fourier terms used and is in practice quick to compute; this is then used to give several numerical examples for both uniform and sheared mean flow. An asymptotic expression is derived to directly calculate the pressure eigenmodes for thin splices. This asymptotic expression is shown to be quantitatively accurate for ducts with very thin splices of less than 1 % unlined area and qualitatively helpful for thicker splices of the order of 6 % unlined area. A thin splice is in some cases shown to increase the damping of certain acoustic modes. The influences of thin splices and thin boundary layers are compared and found to be of comparable magnitude for the parameters considered. Trapped modes at the splices are also identified and investigated.
The splash resulting from the impact of a drop onto a pool is a particularly beautiful manifestation of a canonical problem, where a mass of fluid breaks up into smaller pieces. Despite over a century of experimental study, the splashing mechanics have eluded full description, the details often being obscured by the very rapid motions and small length scales involved. Zhang et al. (J. Fluid Mech., vol. 690, 2012, pp. 5–15) introduce a powerful new tool to the experimental arsenal, when they apply X-ray imaging to study the fine ejecta sheets which emerge during the earliest contact of the drop. Their images reveal hidden details and complex underlying dynamics, which will directly affect the size and velocity of the splashing droplets.
It has previously been demonstrated that the drag experienced by a Poiseuille flow in a channel can be reduced by subjecting the flow to a dynamic regime of blowing and suction at the walls of the channel (also known as ‘transpiration’). Furthermore, it has been found to be possible to induce a ‘bulk flow’, or steady motion through the channel, via transpiration alone. In this work, we derive explicit asymptotic expressions for the induced bulk flow via a perturbation analysis. From this we gain insight into the physical mechanisms at work within the flow. The boundary conditions used are of travelling sine waves at either wall, which may differ in amplitude and phase. Here it is demonstrated that the induced bulk flow results from the effect of convection. We find that the most effective arrangement for inducing a bulk flow is that in which the boundary conditions at either wall are equal in magnitude and opposite in sign. We also show that, for the bulk flow induced to be non-negligible, the wavelength of the boundary condition should be comparable to, or greater than, the height of the channel. Moreover, we derive the optimal frequency of oscillation, for maximising the induced bulk flow, under such boundary conditions. The asymptotic behaviour of the bulk flow is detailed within the conclusion. It is found, under certain caveats, that if the amplitude of the boundary condition is too great, the bulk flow induced will become dependent only upon the speed at which the boundary condition travels along the walls of the channel. We propose the conjecture that for all similar flows, if the magnitude of the transpiration is sufficiently great, the bulk flow will depend only upon the speed of the boundary condition.
Large-eddy simulations of single-shock-driven mixing suggest that, for sufficiently high incident Mach numbers, a two-gas mixing layer ultimately evolves to a late-time, fully developed turbulent flow, with Kolmogorov-like inertial subrange following a power law. After estimating the kinetic energy injected into the diffuse density layer during the initial shock–interface interaction, we propose a semi-empirical characterization of fully developed turbulence in such flows, based on scale separation, as a function of the initial parameter space, as , which corresponds to late-time Taylor-scale Reynolds numbers . In this expression, represents the post-shock perturbation amplitude, the change in interface velocity induced by the shock refraction, the characteristic kinematic viscosity of the mixture, the inner diffuse thickness of the initial density profile, the post-shock Atwood ratio, and for the gas combination and post-shock perturbation amplitude considered. The initially perturbed interface separating air and SF6 (pre-shock Atwood ratio ) was impacted in a heavy–light configuration by a shock wave of Mach number , 1.25, 1.56, 3.0 or 5.0, for which is fixed at about 25 % of the dominant wavelength of an initial, Gaussian perturbation spectrum. Only partial isotropization of the flow (in the sense of turbulent kinetic energy and dissipation) is observed during the late-time evolution of the mixing zone. For all Mach numbers considered, the late-time flow resembles homogeneous decaying turbulence of Batchelor type, with a turbulent kinetic energy decay exponent and large-scale () energy spectrum , and a molecular mixing fraction parameter, . An appropriate time scale characterizing the Taylor-scale Reynolds number decay, as well as the evolution of mixing parameters such as and the effective Atwood ratio , seem to indicate the existence of low- and high-Mach-number regimes.
Turbulent flows subject to solid-body rotation are known to generate steep energy spectra and two-dimensional columnar vortices. The localness of the dominant energy transfers responsible for the accumulation of the energy in the two-dimensional columnar vortices of large horizontal scale remains undetermined. Here, we investigate the scale-locality of the energy transfers directly contributing to the growth of the two-dimensional columnar structures observed in the intermediate Rossby number () regime. Our approach is to investigate the dynamics of the waves and vortices separately: we ensure that the two-dimensional columnar structures are not directly forced so that the vortices can result only from association with wave to vortical energy transfers. Detailed energy transfers between waves and vortices are computed as a function of scale, allowing the direct tracking of the role and scales of the wave–vortex nonlinear interactions in the accumulation of energy in the large two-dimensional columnar structures. It is shown that the dominant energy transfers responsible for the generation of a steep two-dimensional spectrum involve direct non-local energy transfers from small-frequency small-horizontal-scale three-dimensional waves to large-horizontal-scale two-dimensional columnar vortices. Sensitivity of the results to changes in resolution and forcing scales is investigated and the non-locality of the dominant energy transfers leading to the emergence of the columnar vortices is shown to be robust. The interpretation of the scaling law observed in rotating flows in the intermediate- regime is revisited in the light of this new finding of dominant non-locality.
A new type of flow-induced oscillation is reported for a tethered cylinder confined inside a Hele-Shaw cell (ratio of cylinder diameter to cell aperture, ) with its main axis perpendicular to the flow. This instability is studied numerically and experimentally as a function of the Reynolds number and of the density of the cylinder. This confinement-induced vibration (CIV) occurs above a critical Reynolds number much lower than for Bénard–Von Kármán vortex shedding behind a fixed cylinder in the same configuration (). For low values, CIV persists up to the highest value investigated (). For denser cylinders, these oscillations end abruptly above a second value of larger than and vortex-induced vibrations (VIV) of lower amplitude appear for . Close to the first threshold , the oscillation amplitude variation as and the lack of hysteresis demonstrate that the process is a supercritical Hopf bifurcation. Using forced oscillations, the transverse position of the cylinder is shown to satisfy a Van der Pol equation. The physical meaning of the stiffness, amplification and total mass coefficients of this equation are discussed from the variations of the pressure field.
This experimental and theoretical study is devoted to the investigation of head-on collisions of two drops of immiscible liquids. In the experiments, pairs of drops are made to collide at well-defined kinetic and geometric conditions. The sizes and relative velocity of the colliding drops close to the point of impact are measured by means of image processing. The deformed states after the impact, their evolution with time, and their stability are studied by visualization. The theory considers the dynamics of the rim formed at the edge of a radially spreading lamella due to capillary forces at the free surfaces of the lamella and at the liquid/liquid interface. The equations of the rim formation and motion are obtained from the volume, mass and momentum balance equations which account for the inertial, viscous and capillary effects. The theory predicts the evolution of the main geometrical parameters of the liquid mass formed by the drop collision: thickness of the lamella, diameter, and size of the rim cross-section. The theoretical predictions agree well with the experimental data, although no adjustable parameters are used in the model.
The interaction between a turbulent flow and a granular bed via sediment transport produces various bedforms associated with distinct hydrodynamical regimes. In this paper, we compare ripples (downstream-propagating transverse bedforms), chevrons and bars (bedforms inclined with respect to the flow direction) and antidunes (upstream-propagating bedforms), focusing on the mechanisms involved in the early stages of their formation. Performing the linear stability analysis of a flat bed, we study the asymptotic behaviours of the dispersion relation with respect to the physical parameters of the problem. In the subcritical regime (Froude number smaller than unity), we show that the same instability produces ripples or chevrons depending on the influence of the free surface. The transition from transverse to inclined bedforms is controlled by the ratio of the saturation length , which encodes the stabilizing effect of sediment transport, to the flow depth , which determines the hydrodynamical regime. These results suggest that alternate bars form in rivers during flooding events, when suspended load dominates over bedload. In the supercritical regime , the transition from ripples to antidunes is also controlled by the ratio . Antidunes appear around resonant conditions for free surface waves, a situation for which the sediment transport saturation becomes destabilizing. This resonance turns out to be fundamentally different from the inviscid prediction. Their wavelength selected by linear instability mostly scales on the flow depth , which is in agreement with existing experimental data. Our results also predict the emergence, at large Froude numbers, of ‘antichevrons’ or ‘antibars’, i.e. bedforms inclined with respect to the flow and propagating upstream.
It is known experimentally that an aerofoil immersed in a uniform stream at a moderate Reynolds number emits tones. However, there have been major differences in the experimental observations in the past. Some experiments reported the observation of multiple tones, with strong evidence that these tones are most probably generated by a feedback loop. There is also an experiment reporting the observation of a single tone with no tonal jump or other features associated with feedback. In spite of the obvious differences in the experimental observations published in the literature, it is noted that all the dominant tone frequencies measured in all the investigations are in agreement with an empirically derived Paterson formula. The objective of the present study is to perform a direct numerical simulation (DNS) of the flow and acoustic phenomenon to investigate the tone generation mechanism. When comparing with experimental studies, numerical simulations appear to have two important advantages. The first is that there is no background wind tunnel noise in numerical simulation. This avoids the signal-to-noise ratio problem inherent in wind tunnel experiments. In other words, it is possible to study tones emitted by a truly isolated aerofoil computationally. The second advantage is that DNS produces a full set of space–time data, which can be very useful in determining the tone generation processes. The present effort concentrates on the tones emitted by three NACA0012 aerofoils with a slightly rounded trailing edge but with different trailing edge thickness at zero degree angle of attack. At zero degree angle of attack, in the Reynolds number range of to , the boundary layer flow is attached nearly all the way to the trailing edge of the aerofoil. Unlike an aerofoil at an angle of attack, there is no separation bubble, no open flow separation. All the flow separation features tend to increase the complexity of the tone generation processes. The present goal is limited to finding the basic tone generation mechanism in the simplest flow configuration. Our DNS results show that, for the flow configuration under study, the aerofoil emits only a single tone. This is true for all three aerofoils over the entire Reynolds number range of the present study. In the literature, it is known that Kelvin–Helmholtz instabilities of free shear layers generally have a much higher spatial growth rate than that of the Tollmien–Schlichting boundary layer instabilities. A near-wake non-parallel flow instability analysis is performed. It is found that the tone frequencies are the same as the most amplified Kelvin–Helmholtz instability at the location where the wake has a minimum half-width. This suggests that near-wake instability is the energy source of aerofoil tones. However, flow instabilities at low subsonic Mach numbers generally do not cause strong tones. An investigation of how near-wake instability generates tones is carried out using the space–time data provided by numerical simulations. Our observations indicate that the dominant tone generation process is the interaction of the oscillatory motion of the near wake, driven by flow instability, with the trailing edge of the aerofoil. Secondary mechanisms involving unsteady near-wake motion and the formation of discrete vortices in regions further downstream are also observed.
We study dynamo action in a convective layer of electrically conducting, compressible fluid, rotating about the vertical axis. At the upper and lower bounding surfaces, perfectly conducting boundary conditions are adopted for the magnetic field. Two different levels of thermal stratification are considered. If the magnetic diffusivity is sufficiently small, the convection acts as a small-scale dynamo. Using a definition for the magnetic Reynolds number that is based upon the horizontal integral scale and the horizontally averaged velocity at the mid-layer of the domain, we find that rotation tends to reduce the critical value of above which dynamo action is observed. Increasing the level of thermal stratification within the layer does not significantly alter the critical value of in the rotating calculations, but it does lead to a reduction in this critical value in the non-rotating cases. At the highest computationally accessible values of the magnetic Reynolds number, the saturation levels of the dynamo are similar in all cases, with the mean magnetic energy density somewhere between 4 and 9 % of the mean kinetic energy density. To gain further insights into the differences between rotating and non-rotating convection, we quantify the stretching properties of each flow by measuring Lyapunov exponents. Away from the boundaries, the rate of stretching due to the flow is much less dependent upon depth in the rotating cases than it is in the corresponding non-rotating calculations. It is also shown that the effects of rotation significantly reduce the magnetic energy dissipation in the lower part of the layer. We also investigate certain aspects of the saturation mechanism of the dynamo.
We present high-resolution numerical simulations of the Euler and Navier–Stokes equations for a pair of colliding dipoles. We study the possible approach to a finite-time singularity for the Euler equations, and contrast it with the formation of developed turbulence for the Navier–Stokes equations. We present numerical evidence that seems to suggest the existence of a blow-up of the inviscid velocity field at a finite time () with scaling , . This blow-up is associated with the formation of a spectral range, at least for the finite range of wavenumbers that are resolved by our computation. In the evolution toward , the total enstrophy is observed to increase at a slower rate, , than would naively be expected given the behaviour of the maximum vorticity, . This indicates that the blow-up would be concentrated in narrow regions of the flow field. We show that these regions have sheet-like structure. Viscous simulations, performed at various , support the conclusion that any non-zero viscosity prevents blow-up in finite time and results in the formation of a dissipative exponential range in a time interval around the estimated inviscid . In this case the total enstrophy saturates, and the energy spectrum becomes less steep, approaching . The simulations show that the peak value of the enstrophy scales as , which is in accord with Kolmogorov phenomenology. During the short time interval leading to the formation of an inertial range, the total energy dissipation rate shows a clear tendency to become independent of , supporting the validity of Kolmogorov’s law of finite energy dissipation. At later times the kinetic energy shows a decay for all , in agreement with experimental results for grid turbulence. Visualization of the vortical structures associated with the stages of vorticity amplification and saturation show that, prior to , large-scale and the small-scale vortical structures are well separated. This suggests that, during this stage, the energy transfer mechanism is non-local both in wavenumber and in physical space. On the other hand, as the spectrum becomes shallower and a range appears, the energy-containing eddies and the small-scale vortices tend to be concentrated in the same regions, and structures with a wide range of sizes are observed, suggesting that the formation of an inertial range is accompanied by transfer of energy that is local in both physical and spectral space.