Skip to main content Accessibility help
×
Home

The Confined Compressive Strength of Polycrystalline Ice

  • Stephen J. Jones (a1)

Abstract

Triaxial tests were carried out on randomly oriented, laboratory-made, polycrystalline ice, between strain-rates of 10–7 and 10–1 s–1 and with confining pressures from 0.1 to 85 MN m–2, at –11 ± 1°C. Below strain-rates of about 10–5 s–1 the confining pressure has little effect, but at higher strain-rates the confining pressure prevents cracking which allows the compressive strength to rise to a value greater than the unconfined compressive strength. At 1.4 ×10–2 s–1, the unconfined strength of 12 MN m–2 rises to 26 MN m–2 with a confining pressure of 25 MN m–2, before dropping slowly with greater confining pressures. Above 10–2 s–1 the unconfined strength decreases rapidly with increasing strain-rate, but the confined strength continues to increase. The dependence of strain rate on the maximum compressive stress is discussed.

Résumé

On décrit des essais au triaxal de glaces polycristallines produites en laboratoire à orientation quelconque des cristaux, entre des vitesses de 10–7 et 10–1 s–1 et avec des pressions en enceinte fermée de 0, 1 à 85 MN m–2 à –11 ± 1°C. Pour des vitesses de déformation inférieures à environ 10–5 s–1, la pression dans l’enceinte a une faible influence, mais à des vitesses plus élevées la pression de l’enceinte empêche la fissuration, permettant à la résistance à la compression d'atteindre une valeur plus grande que sans confinement. A 1,40 × 10–2 s–1, la résistance qui est de 12 MN m–2sans confinement, atteint 26 MN m–2 s ous une pression de confinement de 25 MN m–2 avant de croître doucement avec des pressions de confinement plus fortes. Au dessus de 10–2 s–1 la résistance sans confinement décroît rapidement si augmente la vitesse de déformation, mais la résistance avec confinement continue à croître. On discute l’influence de la vitesse de déformation sur l’effort maximum de compression que la glace peut encaisser.

Zusammenfassung

Es werden drei-axiale Versuche an zufällig orientiertem, künstlich hergestelltem polykristallinem Eis bei Deformationsraten von 10–7 bis 10–1 s–1 und mit beschränkten Drucken von 0,1 bis 85 MN m–2 bei –11 ± 1°C beschrieben. Bei Deformationsraten unter ca. 10–5 s–1 hat der Beschränkungsdruck nur geringen Einfluss; bei höheren Deformationsraten jedoch verhindert er ein Zerspringen, weil dann die Druckfestigkeit höher wird als im unbeschränkten Zustand. Bei 1,4 × 10–2 s–1 steigt die unbeschränkte Festigkeit von 12 MN m–2 auf 26 MN m–2 unter einem Beschränkungsdruck von 25 MN m–2; mit wachsendem Beschränkungsdruck nimmt sie langsam wieder ab. Über 10–2 s–l sinkt die unbeschränkte Festigkeit schnell mit wachsender Deformationsrate, die beschränkte Festigkeit jedoch nimmt weiter zu. Die Abhängigkeit der Deformationsrate von der maximalen Druckfestigkeit wird diskutiert.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Confined Compressive Strength of Polycrystalline Ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Confined Compressive Strength of Polycrystalline Ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Confined Compressive Strength of Polycrystalline Ice
      Available formats
      ×

Copyright

References

Hide All
Alkire, B. D. and Andersland, O. B. 1973. The effect of confining pressure on the mechanical properties of sand-ice materials. Journal of Glaciology, Vol. 12, No. 66, p. 469–81.
Barnes, P. and others. 1971. Friction and creep of polycrystalline ice. Barnes, P. Tabor, D. and Walker, J.C.F. Proceedings of the Royal Society of London, ser. A, Vol. 324, No. 1557, p. 127–55.
Chamberlain, E and others. 1972. The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions, Chamberlain, E. Groves, C. and Perham, R. Géotechnique(London). Vol. 22. No. 3, p. 469–83.
Goughnour, R. R. and Andersland, O. B. 1968. Mechanical properties of a sand-ice system. Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol. 94, No. SM4, p. 923–50.
Haefeli, R. and others. 1968. Deformation of polycrystalline ice under combined uniaxial and hydrostatic pressure. [by] Haefeli, R. Jaccard, C. and de Quervain, M. |R.] Union de Géodésie et Géophysique Internationale. Association Internationale d'Hydrologie Scientifique. Assemblée générale de Berne. 25 sept.-? oct. 1967 [Commission de Neiges et Glaces.] Rapports et discussions, p. 34144. (Publication Nu. 79 de l'Association Internationale d'Hydrologie Scientifique.)
Hawkes, I. and Mellor, M. 1970. Uniaxial testing in rock mechanics laboratories. Engineering Geology. Vol. 4, No. 3, p. 177285.
Hooke, R. L. and others. 1980. Mechanical properties of polycrystalline ice: an assessment of current knowledge and priorities for research. Hooke, R. L. [and 9 others] Cold Regions Science and Technology, Vol. 3, No. 4, p. 263–75.
Jones, S. J. 1978. Triaxial testing of polycrystalline ice. Proceedings of the third International Conference on Permafrost, July 10-13,1978, Edmonton, Alberta, Canada, Vol. 1, p. 670–74.
Michel, B. 1978. ice mechanics. Québec, Les Presses de l'Université Laval.
Miller, S. L. 1969. Clathrate hydrates of air in Antarctic ice. Science, Vol. 165, No. 3892, p. 489–90.
Parameswaran, V. R. 1980. Deformation behaviour and strength of frozen sand. Canadian Geotechnical Journal, Vol. 17. No. 1 p. 7488
Parameswaran, V. R. and Jones, S. J. 1981. Triaxial testing of frozen sand. Journal of Glaciology, Vol. 26, No. 95. p. 147–55.
Ramseier, R. O. 1976 Growth and mechanical properties of river and lake ice. Ottawa, Dept. of the Environment. Marine Sciences and Information Directorate. (Manuscript Report Series, No. 40.)
Rigsby, G. P. 1958. Effect of hydrostatic pressure on velocity of shear deformation of single ice crystals. Journal of Glaciology, Vol. 3, No. 24, p. 271–78
Simonson, E. R. and others. 1975. High pressure mechanical properties of three frozen materials, Simonson, E. R. Jones, A. H. and Green, S. J. Proceedings of the fourth International Conference on High Pressure. Kyoto, 1974 (Kyoto, Physico-Chemical Society of Japan), p. 115–21.
Sinha, N. K. and Frederking, R. M. W. 1979. Effect of test system stiffness on strength of ice. POAC 79. The fifth International Conference on Port and Ocean Engineering under Arctic Conditions. At the Norwegian Institute of Technology. August 13–18, 1979. Proceedings. Vol. 1, p. 708–17.
Smith, L. L. and Cheatham, J. B. 1975. Plasticity of ice and sand–ice systems. Transactions of the American Society of Mechanical Engineers. Journal of Engineering for Industry, Vol. 97, Ser B, No. 2. p. 479–84.

The Confined Compressive Strength of Polycrystalline Ice

  • Stephen J. Jones (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed