Skip to main content
    • Aa
    • Aa

Quantifying supraglacial meltwater pathways in the Paakitsoq region, West Greenland

  • CONRAD KOZIOL (a1), NEIL ARNOLD (a1), ALLEN POPE (a2) (a3) (a4) and WILLIAM COLGAN (a3) (a5)

Increased summer ice velocities on the Greenland ice sheet are driven by meltwater input to the subglacial environment. However, spatial patterns of surface input and partitioning of meltwater between different pathways to the base remain poorly understood. To further our understanding of surface drainage, we apply a supraglacial hydrology model to the Paakitsoq region, West Greenland for three contrasting melt seasons. During an average melt season, crevasses drain ~47% of surface runoff, lake hydrofracture drains ~3% during the hydrofracturing events themselves, while the subsequent surface-to-bed connections drain ~21% and moulins outside of lake basins drain ~15%. Lake hydrofracture forms the primary drainage pathway at higher elevations (above ~850 m) while crevasses drain a significant proportion of meltwater at lower elevations. During the two higher intensity melt seasons, model results show an increase (~5 and ~6% of total surface runoff) in the proportion of runoff drained above ~1300 m relative to the melt season of average intensity. The potential for interannual changes in meltwater partitioning could have implications for how the dynamics of the ice sheet respond to ongoing changes in meltwater production.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quantifying supraglacial meltwater pathways in the Paakitsoq region, West Greenland
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Quantifying supraglacial meltwater pathways in the Paakitsoq region, West Greenland
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Quantifying supraglacial meltwater pathways in the Paakitsoq region, West Greenland
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Conrad Koziol <>
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

AF Banwell , NS Arnold , IC Willis , M Tedesco and AP Ahlstrøm (2012a) Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet. J. Geophys. Res., 117(F4), F04012, ISSN 0148-0227 (doi: 10.1029/2012JF002393)

AF Banwell and 6 others (2012b) Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland. J. Glaciol., 58(212), 10471062, ISSN 00221430 (doi: 10.3189/2012JoG12J034)

I Bartholomew and 5 others (2010) Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci., 3(6), 408411, ISSN 1752-0894 (doi: 10.1038/ngeo863)

I Bartholomew and 6 others (2011) Seasonal variations in Greenland Ice Sheet motion: inland extent and behaviour at higher elevations. Earth Planet. Sci. Lett., 307(3–4), 271278, ISSN 0012821X (doi: 10.1016/j.epsl.2011.04.014)

C Clason , DW Mair , DO Burgess and PW Nienow (2012) Modelling the delivery of supraglacial meltwater to the ice/bed interface: application to southwest Devon Ice Cap, Nunavut, Canada. J. Glaciol., 58(208), 361374, ISSN 00221430 (doi: 10.3189/2012JoG11J129)

CC Clason and 6 others (2015) Modelling the transfer of supraglacial meltwater to the bed of leverett glacier, southwest Greenland. Cryosphere, 9(1), 123138 (doi: 10.5194/tc-9-123-2015)

W Colgan and 7 others (2011) An increase in crevasse extent, West Greenland: Hydrologic implications. Geophys. Res. Lett., 38(18) (doi: 10.1029/2011GL048491)

T Cowton and 7 others (2013) Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res.: Earth Surf., 118(1), 2941, ISSN 21699003 (doi: 10.1029/2012JF002540)

SB Das and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science (New York, N.Y.), 320(5877), 778781, ISSN 1095-9203 (doi: 10.1126/science.1153360)

SH Doyle and 9 others (2013) Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet. Cryosphere, 7(1), 129140, ISSN 1994-0424 (doi: 10.5194/tc-7-129-2013)

SH Doyle and 6 others (2014) Persistent flow acceleration within the interior of the Greenland ice sheet. Geophys. Res. Lett., 41(3), 899905, ISSN 1944-8007 (doi: 10.1002/2013GL058933), 2013GL058933

K Echelmeyer , T Clarke and W Harrison (1991) Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part I. Surface morphology. J. Glaciol., 37(127), 368382

X Fettweis , M Tedesco , M van den Broeke and J Ettema (2011) Melting trends over the Greenland ice sheet (1958-2009) from spaceborne microwave data and regional climate models. Cryosphere, 5(2), 359375, ISSN 1994-0424 (doi: 10.5194/tc-5-359-2011)

X Fettweis and 5 others (2013) Brief communication: important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere, 7(1), 241248, ISSN 1994-0424 (doi: 10.5194/tc-7-241-2013)

AAAW Fitzpatrick and 8 others (2013) Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet. J. Glaciol., 59(216), 687696, ISSN 00221430 (doi: 10.3189/2013JoG12J143)

AAW Fitzpatrick and 9 others (2014) A decade (2002€−2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland. Cryosphere, 8(1), 107121, ISSN 1994-0424 (doi: 10.5194/tc-8-107-2014)

JA Harrington , NF Humphrey and JT Harper (2015) Temperature distribution and thermal anomalies along a flowline of the Greenland Ice Sheet. Ann. Glaciol., 56(70), 98104, ISSN 02603055 (doi: 10.3189/2015AoG70A945)

A Johansson , P Jansson and I Brown (2013) Spatial and temporal variations in lakes on the Greenland Ice Sheet. J. Hydrol., 476, 314320, ISSN 00221694 (doi: 10.1016/j.jhydrol.2012.10.045)

I Joughin , BE Smith , IM Howat , T Scambos and T Moon (2010a) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430, ISSN 00221430 (doi: 10.3189/002214310792447734)

I Joughin and 9 others (2013) Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere, 7(4), 11851192, ISSN 1994-0424 (doi: 10.5194/tc-7-1185-2013)

J Kingslake , F Ng and A Sole (2015) Modelling channelized surface drainage of supraglacial lakes. J. Glaciol., 61(225), 185199, ISSN 00221430 (doi: 10.3189/2015JoG14J158)

MJ Krawczynski , MD Behn , SB Das and I Joughin (2009) Constraints on the lake volume required for hydro-fracture through ice sheets. Geophys. Res. Lett., 36(10), L10501, ISSN 0094-8276 (doi: 10.1029/2008GL036765)

AA Leeson , A Shepherd , S Palmer , A Sundal and X Fettweis (2012) Simulating the growth of supraglacial lakes at the western margin of the Greenland ice sheet. Cryosphere, 6(5), 10771086, ISSN 1994-0424 (doi: 10.5194/tc-6-1077-2012)

AA Leeson and 7 others (2013) A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet. J. Glaciol., 59(218), 11791188, ISSN 00221430 (doi: 10.3189/2013JoG13J064)

YL Liang and 7 others (2012) A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm. Remote Sens. Environ., 123, 127138, ISSN 00344257 (doi: 10.1016/j.rse.2012.03.020)

MP Lüthi and 7 others (2015) Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming. Cryosphere, 9(1), 245253, ISSN 1994-0424 (doi: 10.5194/tc-9-245-2015)

D McGrath , W Colgan , K Steffen , P Lauffenburger and J Balog (2011) Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region, Greenland ice sheet. J. Glaciol., 57(205), 954964 (doi: 10.3189/002214311798043735)

T Moon and 6 others (2014) Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett., 41(20), 72097216, ISSN 1944-8007 (doi: 10.1002/2014GL061836)

M Morlighem , E Rignot , J Mouginot , H Seroussi and E Larour (2014) Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci., 7(6), 418422, ISSN 1752-0894 (doi: 10.1038/ngeo2167)

BF Morriss and 7 others (2013) A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery. Cryosphere, 7(6), 18691877, ISSN 1994-0424 (doi: 10.5194/tc-7-1869-2013)

B Noël and 5 others (2015) Summer snowfall on the Greenland ice sheet: a study with the updated regional climate model racmo2.3. Cryos. Discuss., 9(1), 11771208 (doi: 10.5194/tcd-9-1177-2015)

T Phillips , H Rajaram , W Colgan , K Steffen and W Abdalati (2013) Evaluation of cryo-hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland. J. Geophys. Res.: Earth Surf., 118(3), 12411256, ISSN 21699011 (doi: 10.1002/jgrf.20079)

K Poinar and 5 others (2015) Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophys. Res. Lett., 42, 18001807, ISSN 00948276 (doi: 10.1002/2015GL063192.Received)

C Schoof (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806, ISSN 1476-4687 (doi: 10.1038/nature09618)

N Selmes , T Murray and TD James (2011) Fast draining lakes on the Greenland ice sheet. Geophys. Res. Lett., 38(15), ISSN 1944-8007 (doi: 10.1029/2011GL047872)

N Selmes , T Murray and TD James (2013) Characterizing supraglacial lake drainage and freezing on the Greenland Ice Sheet. Cryos. Discuss., 7(1), 475505, ISSN 1994-0440 (doi: 10.5194/tcd-7-475-2013)

La Stevens and 7 others (2015) Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature, 522(7554), 7376, ISSN 0028-0836 (doi: 10.1038/nature14480)

A Sundal and 5 others (2009) Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sens. Environ., 113(10), 21642171, ISSN 00344257 (doi: 10.1016/j.rse.2009.05.018)

AV Sundal and 5 others (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469(7331), 521524, ISSN 1476-4687 (doi: 10.1038/nature09740)

M Tedesco and 5 others (2013) Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environ. Res. Lett., 8(3), 034007, ISSN 1748-9326 (doi: 10.1088/1748-9326/8/3/034007)

AJ Tedstone and 5 others (2015) Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature, 526(7575), 692695, ISSN 0028-0836 (doi: 10.1038/nature15722)

RSW Van De Wal and 10 others (2015) Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere, 9(2), 603611, ISSN 19940424 (doi: 10.5194/tc-9-603-2015)

M van den Broeke and 8 others (2009) Partitioning recent Greenland mass loss. Science (New York, N.Y.) , 326(5955), 984986, ISSN 1095-9203 (doi: 10.1126/science.1178176)

CJ Van Der Veen , JC Plummer and LA Stearns (2011) Controls on the recent speed-up of Jakobshavn Isbr??, West Greenland. J. Glaciol., 57(204), 770782, ISSN 00221430 (doi: 10.3189/002214311797409776)

D Vaughan (1993) Relating the occurrence of crevasses to surface strain rates. J. Glaciol., 39(132), 255266

K Yang , LC Smith , VW Chu , CJ Gleason and M Li (2015) A caution on the use of surface digital elevation models to simulate supraglacial hydrology of the Greenland ice sheet. IEEE J. Selected Topics Appl. Earth Obs. Remote Sens., 8(11), 52125224, ISSN 21511535 (doi: 10.1109/JSTARS.2015.2483483)

HJ Zwally and 5 others (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science (New York, N.Y.), 297(5579), 218222, ISSN 1095-9203 (doi: 10.1126/science.1072708)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 27
Total number of PDF views: 192 *
Loading metrics...

Abstract views

Total abstract views: 375 *
Loading metrics...

* Views captured on Cambridge Core between 6th March 2017 - 26th September 2017. This data will be updated every 24 hours.