Skip to main content

Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica

  • S.P. Carter (a1), H.A. Fricker (a1) and M.R. Siegfried (a1)

The subglacial water system of lower Whillans Ice Stream on the Siple Coast, West Antarctica, contains numerous connected subglacial lakes in three hydrological basins (northern, central and southern). We use Ice, Cloud and land Elevation Satellite (ICESat) data to derive estimates of lake volume change and regional thickness changes. By combining these results with a water budget model, we show that a uniform, localized thickness increase perturbed the hydropotential, resulting in a change in course of a major flow path within the system in 2005. Water originating from upper Whillans and Kamb Ice Streams that previously supplied the southern basin became diverted toward Subglacial Lake Whillans (SLW). This diversion led to a tenfold filling rate increase of SLW. Our observation suggests that water piracy may be common in the Siple Coast region, where the gentle basal relief makes the basal hydropotential particularly sensitive to small changes in ice thickness. Given the previously inferred connections between water piracy and ice-stream slowdown elsewhere in the region, the subtle and complex nature of this system presents new challenges for numerical models.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica
      Available formats
Hide All
Alley RB (1996) Towards a hydrological model for computerized ice-sheet simulations. Hydrol. Process., 10(4), 649660
Anandakrishnan S and Alley RB (1997) Stagnation of Ice Stream C, West Antarctica by water piracy. Geophys. Res. Lett., 24(3), 265268 (doi: 10.1029/96GL04016)
Beem LH, Jezek KC and Van der Veen CJ (2010) Basal melt rates beneath Whillans Ice Stream, West Antarctica. J. Glaciol., 56(198), 647654 (doi: 10.3189/002214310793146241)
Bindschadler R, Vornberger P and Gray L (2005) Changes in the ice plain of Whillans Ice Stream, West Antarctica. J. Glaciol., 51(175), 620636 (doi: 10.3189/172756505781829070)
Blankenship DD and 9 others (2001) Geologic controls on the initiation of rapid basal motion for West Antarctic ice streams: a geophysical perspective including new airborne radar sounding and laser altimetry results. In The West Antarctic ice sheet: behavior and environment. (Antarctic Research Series 77) American Geophysical Union, Washington, DC, 105121
Borsa AA, Moholdt G, Fricker HA and Brunt KM (2013) A range correction for ICESat and its potential impact on ice sheet mass balance studies. Cryosphere Discuss., 7(4), 42874319 (doi: 10.5194/tcd-7-4287-2013)
Bougamont M, Tulaczyk S and Joughin I (2003) Response of subglacial sediments to basal freeze-on: 2. Application in numerical modeling of the recent stoppage of Ice Stream C, West Antarctica. J. Geophys. Res., 108(B4), 2223 (doi: 10.1019/2002JB001936)
Carter SP and Fricker HA (2012) The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. Glaciol., 53(60 Pt 2), 267280 (doi: 10.3189/2012AoG60A119)
Carter SP, Blankenship DD, Peters MF, Young DA, Holt JW and Morse DL (2007) Radar-based subglacial lake classification in Antarctica. Geochem. Geophys. Geosyst., 8(3), Q03016 (doi: 10.1029/2006GC001408)
Carter SP, Blankenship DD, Young DA, Peters ME, Holt JW and Siegert MJ (2009) Dynamic distributed drainage implied by the flow evolution of the 1996–1998 Adventure Trench subglacial outburst flood. Earth Planet. Sci. Lett., 283(1–4), 2437 (doi: 10.1016/j.epsl.2009.03.019)
Carter SP and 6 others (2011) Modeling 5 years of subglacial lake activity in the MacAyeal Ice Stream (Antarctica) catchment through assimilation of ICESat laser altimetry. J. Glaciol., 57(206), 10981112 (doi: 10.3189/002214311798843421)
Catania G and Paola C (2001) Braiding under glass. Geology, 29(3), 259262 (doi: 10.1130/0091-7613(2001)029<0259:BUG>2.0.CO;2)
Catania G, Hulbe C, Conway H, Scambos TA and Raymond CF (2012) Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium. J. Glaciol., 58(210), 741752 (doi: 10.3189/2012JoG11J219)
Christianson K, Jacobel RW, Horgan HJ, Anandakrishnan S and Alley RB (2012) Subglacial Lake Whillans – ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett., 331–332, 237245 (doi: 10.1016/j.epsl.2012.03.013)
Christoffersen P and Tulaczyk S (2003) Response of subglacial sediments to basal freeze-on: I. Theory and comparison to observations from beneath the West Antarctic ice sheet. J. Geophys. Res., 108(B4), 2222 (doi: 10.1029/2002JB001935)
Conway H, Hall BL, Denton GH, Gades AM and Waddington ED (1999) Past and future grounding-line retreat of the West Antarctic ice sheet. Science, 286(5438), 280283 (doi: 10.1126/science.286.5438.280)
Crary AP, Robinson ES, Bennett HF and Boyd WW Jr (1962) Glaciological regime of the Ross Ice Shelf. J. Geophys. Res., 67(7), 27912807
Creyts TT and Schoof CG (2009) Drainage through subglacial water sheets. J. Geophys. Res., 114(F4), F04008 (doi: 10.1029/2008JF001215)
Drewry DJ (1975) Radio echo sounding map of Antarctica, (∼90° E−180°). Polar Rec., 17(109), 359374 (doi: 10.1017/S0032247400032186)
Dupain-Triel J-L (1791) La France considérée dans les différentes hauteurs de ses plaines: ouvrage spécialement destiné à l’instruction de la jeunesse. (BN, Cartes et Plans, map No. Ge.D.15126) Hérault, Paris
Engelhardt H (2004) Thermal regime and dynamics of the West Antarctic ice sheet. Ann. Glaciol., 39, 8592 (doi: 10.3189/172756404781814203)
Evatt GW and Fowler AC (2007) Cauldron subsidence and subglacial floods. Ann. Glaciol., 45, 163168 (doi: 10.3189/172756407782282561)
Evatt GW, Fowler AC, Clark CD and Hulton NRJ (2006) Subglacial floods beneath ice sheets. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 17691794 (doi: 10.1098/rsta.2006.1798)
Flowers GE and Clarke GKC (2002) A multicomponent coupled model of glacier hydrology: 1. Theory and synthetic examples. J. Geophys. Res., 107(B11), 2287 (doi: 10.1029/2001JB001122)
Fowler AC (2009) Dynamics of subglacial floods. Proc. R. Soc. London, Ser. A, 465(2106), 18091828 (doi: 10.1098/rspa.2008.0488)
Fretwell P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393 (doi: 10.5194/tc-7-375-2013)
Fricker HA and Padman L (2006) Ice shelf grounding zone structure from ICESat laser altimetry. Geophys. Res. Lett., 33(15), L15502 (doi: 10.1029/2006GL026907)
Fricker HA and Scambos T (2009) Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol., 55(190), 303315 (doi: 10.3189/002214309788608813)
Fricker HA, Scambos T, Bindschadler R and Padman L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 15441548 (doi: 10.1126/science.1136897)
Fricker HA and 13 others (2011) Siple Coast subglacial aquatic environments: the Whillans Ice Stream Subglacial Access Research Drilling Project. In Siegert MJ, Kennicutt MCI and Bindschadler RA eds. Antarctic subglacial aquatic environments. (Geophysical Monograph Series 192) American Geophysical Union, Washington, DC, 199219
Gray L, Joughin I, Tulaczyk S, Spikes VB, Bindschadler R and Jezek K (2005) Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett., 32(3), L03501 (doi: 10.1029/2004GL021387)
Haran TM and Scambos TA (2007) Enhancing a RADARSAT/ICESat digital elevation model of West Antarctica using MODIS imagery. [Abstr. C51B-0386] Eos, 88(52), Fall Meet. Suppl.
Haran T, Bohlander J, Scambos T, Fahnestock M and and compilers (2005) MODIS mosaic of Antarctica (MOA) image map. National Snow and Ice Data Center, Boulder, CO. Digital media:
Horgan HJ and 7 others (2012) Subglacial Lake Whillans – seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett., 331–332, 201209 (doi: 10.1016/j.epsl.2012.02.023)
Iken A and Bindschadler RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119
Johnson J and Fastook J (2002) Northern Hemisphere glaciation and its sensitivity to basal melt water. Quat. Int., 95–96, 6574
Joughin I, Tulaczyk S, MacAyeal D and Engelhardt H (2004) Melting and freezing beneath the Ross ice streams, Antarctica. J. Glaciol., 50(168), 96108 (doi: 10.3189/172756504781830295)
Joughin I and 10 others (2005) Continued deceleration of Whillans Ice Stream, West Antarctica. Geophys. Res. Lett., 32(22), L22501 (doi: 10.1029/2005GL024319)
Kamb B (2001) Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley RB and Bindschadler RA eds. The West Antarctic ice sheet: behavior and environment. (Antarctic Research Series 77) American Geophysical Union, Washington, DC, 157199
Le Brocq AM, Payne AJ, Siegert MJ and Alley RB (2009) A subglacial water-flow model for West Antarctica. J. Glaciol., 55(193), 879888 (doi: 10.3189/002214309790152564)
Ligtenberg SRM, Helsen MM and Van den Broeke MR (2011) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere, 5(4), 809819 (doi: 10.5194/tc-5- 809-2011)
Livingstone SJ, Clark CD and Woodward J (2013) Predicting subglacial lakes and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. Cryos. Discuss., 7(2), 11771213 (doi: 10.5194/tcd-7-1177-2013)
Lythe MB, Vaughan DG and BEDMAP consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6), 11 33511 351 (doi: 10.1029/2000JB900449)
Moholdt G, Hagen JO, Eiken T and Schuler TV (2010) Geometric changes and mass balance of the Austfonna ice cap, Svalbard. Cryosphere, 4(1), 2134 (doi: 10.5194/tc-4-21-2010)
Nye JF (1976) Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol., 17(76), 181207
Oswald GKA and Robin GdeQ (1973) Lakes beneath the Antarctic ice sheet. Nature, 245(5423), 251254 (doi: 10.1038/245251a0)
Parizek BR, Alley RB and Hulbe CL (2003) Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica. Ann. Glaciol., 36, 251256 (doi: 10.3189/172756403781816167)
Priscu JC and 12 others (2013) A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarct. Sci., 25(5), 637647 (doi: 10.1017/S0954102013000035)
Pritchard HD, Arthern RJ, Vaughan DG and Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971975 (doi: 10.1038/nature08471)
Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, Van den Broeke MR and Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502505 (doi: 10.1038/nature10968)
Quinn PF, Ostendorf B, Beven K and Tenhunen J (1998) Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GASFLUX model for an Alaskan catchment. Hydrol. Earth Syst. Sci., 2(1), 5164 (doi: 10.5194/hess-2-51-1998)
Retzlaff R, Lord N and Bentley CR (1993) Airborne-radar studies: Ice Streams A, B and C, West Antarctica. J. Glaciol., 39(133), 495506
Rignot E and Jacobs SS (2002) Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science, 296(5575), 20202023 (doi: 10.1126/science.1070942)
Rignot E, Mouginot J and Scheuchl B (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Röthlisberger H (1972) Seismic exploration in cold regions. I. CRREL Monogr. II-A2a
Saunders W (2000) Preparation of DEMs for use in environmental modeling analysis. In Maidment D and Djokic D eds. Hydrologic and hydraulic modeling support with Geographic Information Systems. Environmental Systems Research Institute, Redlands, CA
Scheuchl B, Mouginot J and Rignot E (2012) Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009. Cryosphere, 6(5), 10191030 (doi: 10.5194/tc-6-1019-2012)
Sergienko OV and Hulbe CL (2011) ‘Sticky spots’ and subglacial lakes under ice streams of the Siple Coast, Antarctica. Ann. Glaciol., 52(58), 1822 (doi: 10.3189/172756411797252176)
Shabtaie S and Bentley CR (1987) West Antarctic ice streams draining into the Ross Ice Shelf: configuration and mass balance. J. Geophys. Res., 92(B2), 13111336 (doi: 10.1029/JB092iB02p01311)
Shreve RL (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205214
Siegert MJ, Carter S, Tabacco I, Popov S and Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct. Sci., 17(3), 453460 (doi: 10.1017/S0954102005002889)
Siegert MJ and 8 others (2013) Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet. Cryos. Discuss., 7(3), 29792999 (doi: 10.5194/tcd-7-2979-2013)
Siegfried MR, Hawley RL and Burkhart JF (2011) High-resolution ground-based GPS measurements show intercampaign bias in ICESat elevation data near Summit, Greenland. IEEE Trans. Geosci. Remote Sens., 49(9), 33933400 (doi: 10.1109/TGRS.2011.2127483)
Smith BE, Fricker HA, Joughin IR and Tulaczyk S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol., 55(192), 573595 (doi: 10.3189/002214309789470879)
Stearns LA, Smith BE and Hamilton GS (2008) Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nature Geosci., 1(12), 827831 (doi: 10.1038/ngeo356)
Stokes CR, Clark CD, Lian OB and Tulaczyk S (2007) Ice stream sticky spots: a review of their identification and influence beneath contemporary and palaeo-ice streams. Earth-Sci. Rev., 81(3–4), 217249 (doi: 10.1016/j.earscirev.2007.01.002)
Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S and Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469(7331), 521524 (doi: 10.1038/nature09740)
Urban TJ and Schutz BE (2005) ICESat sea level comparisons. Geophys. Res. Lett., 32(23), L23S10 (doi: 10.1029/2005GL024306)
Wingham DJ, Siegert MJ, Shepherd A and Muir AS (2006) Rapid discharge connects Antarctic subglacial lakes. Nature, 440(7087), 10331036 (doi: 10.1038/nature04660)
Wright A and Siegert M (2012) A fourth inventory of Antarctic subglacial lakes. Antarct. Sci., 24(6), 659664 (doi: 10.1017/S095410201200048X)
Wright AP, Siegert MJ, Le Brocq AM and Gore DB (2008) High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes. Geophys. Res. Lett., 35(17), L17504 (doi: 10.1029/2008GL034937)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 10
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 38 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 22nd January 2018. This data will be updated every 24 hours.