Skip to main content Accessibility help
×
Home

Glacier status and contribution to streamflow in the Olympic Mountains, Washington, USA

  • J.L. Riedel (a1), Steve Wilson (a2), William Baccus (a3), Michael Larrabee (a1), T.J. Fudge (a4) and Andrew Fountain (a2)...

Abstract

The Olympic Peninsula, Washington, USA, currently holds 184 alpine glaciers larger than 0.01 km2 and their combined area is 30.2 ± 0.95 km2. Only four glaciers are >1 km2 and 120 of the others are <0.1 km2. This represents a loss of 82 glaciers and a 34% decrease in combined area since 1980, with the most pronounced losses occurring on south-facing aspects and in the more arid northeastern part of the range. Annual rate of loss in glacier area for seven of the largest glaciers accelerated from 0.26 km2 a−1 (1900–80) to 0.54 km2 a−1 (1980–2009). Thinning rates on four of the largest glaciers averaged nearly 1 ma−1 from 1987 to 2010, resulting in estimated volume losses of 17–24%. Combined glacial snow, firn and ice melt in the Hoh watershed is in the range 63–79 ± 7 × 106 m3, or 9–15% of total May–September streamflow. In the critical August–September period, the glacial fraction of total basin runoff increases to 18–30%, with one-third of the water directly from glacial ice (i.e. not snow and firn). Glaciers in the Elwha basin produce 12–15 ± 1.3 × 106 m3 (2.5–4.0%), while those in the Dungeness basin contribute 2.5–3.1 ± 0.28 × 106 m3 (3.0–3.8%).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier status and contribution to streamflow in the Olympic Mountains, Washington, USA
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier status and contribution to streamflow in the Olympic Mountains, Washington, USA
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier status and contribution to streamflow in the Olympic Mountains, Washington, USA
      Available formats
      ×

Copyright

Corresponding author

Correspondence: J.L. Riedel <jon_riedel@nps.gov>

References

Hide All
Allen, CR, Kamb, WB, Meier, MF and Sharp, RP (1960) Structure of the lower Blue Glacier, Washington. J. Geol., 68(6), 601625
Bolch, T, Menounos, B and Wheate, R (2010) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ., 114(1), 127137 (doi: 10.1016/j.rse.2009.08.015)
Conway, H, Rasmussen, LA and Marshall, HP (1999) Annual mass balance of Blue Glacier, USA: 1955–97. Geogr. Ann. A, 81(4), 509520
Davey, CA, Redmond, KT and Simeral, DB (2006) Weather and climate inventory, National Park Service, North Coast and Cascades Network. (National Resource Technical Report NPS/ NCCN/NRTR-2006/010) National Resource Program Center, Fort Collins, CO
De Woul, M and Hock, R (2005) Static mass-balance sensitivity of Arctic glaciers and ice caps using a degree-day approach. Ann. Glaciol., 42, 217224 (doi: 10.3189/172756405781813096)
Elsner, MM and 8 others (2010) Implications of 21st-century climate change for the hydrology of Washington State. Climatic Change, 102(1–2), 225260 (doi: 10.1007/s10584-010-9855-0)
Granshaw, FD and Fountain, AG (2006) Glacier change (1958– 1998) in the North Cascades National Park Complex, Washington, USA. J. Glaciol., 52(177), 251256 (doi: 10.3189/172756506781828782)
Halofsky, JE, Peterson, DL, O’Halloran, KA and Hoffman, CH eds (2011) Adapting to climate change at Olympic National Forest and Olympic National Park. (Gen. Tech. Rep. PNW-GTR-844) Pacific Northwest Research Station, US Department of Agriculture, Portland, OR http://www.treesearch.fs.fed.us/pubs/38702
Heroux, P and Kouba, J (2001) GPS precise point positioning using IGS orbit products. Phys. Chem. Earth, 26(6–8), 573578
Heusser, CJ (1957) Variations of Blue, Hoh and White Glaciers during recent centuries. Arctic, 10(3), 139150 (doi: 10.14430/arctic3761)
Hodge, SM (1974) Variations in the sliding of a temperate glacier. J. Glaciol., 13(69), 349369
Hodson, A and 7 others (2008) Glacial ecosystems. Ecol. Monogr., 78(1), 4167 (doi: 10.1890/07-0187.1)
Hubley, RC (1956) Glaciers of the Washington Cascade and Olympic Mountains; their present activity and its relation to local climatic trends. J. Glaciol., 2(19), 669674 (doi: 10.3189/002214356793701938)
Josberger, EG, Bidlake, WR, March, RS and Kennedy, BW (2007) Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA. Ann. Glaciol., 46, 291296 (doi: 10.3189/172756407782871314)
LaChapelle, ER (1965) The mass budget of Blue Glacier, Washington. J. Glaciol., 5(41), 609623
Malcomb, NL and Wiles, GC (2013) Tree-ring-based reconstructions of North American glacier mass balance through the Little Ice Age: contemporary warming transition. Quat. Res., 79(2), 123137 (doi: 10.1016/j.yqres.2012.11.005)
Mantua, NJ, Hare, SR, Zhang, Y, Wallace, JM and Francis, RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc., 78(6), 10691079 (doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2)
Mantua, N, Tohver, I and Hamlet, A (2010) Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Climatic Change, 102(1–2), 187223 (doi: 10.1007/s10584-010-9845-2)
Matthes, FE (1946) Report of Committee on Glaciers, 1945. Eos, 27(2), 219233
Meier, MF (1961) Distribution and variations of glaciers in the United States exclusive of Alaska. IASH Publ. 54 (General Assembly of Helsinki 1960 – Snow and Ice), 420429
Mote, PW and Salathé, EP Jr (2010) Future climate in the Pacific Northwest. Climatic Change, 102(1–2), 2950 (doi: 10.1007/s10584-010-9848-z)
Nolin, AW and Daly, C (2006) Mapping ‘at risk’ snow in the Pacific Northwest.J. Hydromet., 7(5), 11641171 (doi: 10.1175/JHM543.1)
PRISM Group (2006) United States average monthly and annual precipitation, 1971–2000. Oregon State University, Corvallis, OR http://prism.oregonstate.edu
Rasmussen, LA and Conway, H (2001) Estimating South Cascade Glacier (Washington, USA) mass balance from a distant radiosonde and comparison with Blue Glacier. J. Glaciol., 47(159), 579588 (doi: 10.3189/172756501781831873)
Rasmussen, LA and Wenger, JM (2009) Upper-air model of summer balance on Mount Rainier, USA. J. Glaciol., 55(192), 619624 (doi: 10.3189/002214309789471012)
Rasmussen, LA, Conway, H and Hayes, PS (2000) The accumulation regime of Blue Glacier, USA, 1914–96. J. Glaciol., 46(153), 326334 (doi: 10.3189/172756500781832846)
Riedel, JR, Burrows, RA and Wenger, JM (2008) Long-term monitoring of small glaciers at North Cascades National Park: a prototype park model for the North Coast and Cascades Network. (Natur. Resour. Rep. NPS/NCCN/NRR-2008/066) National Park Service, Fort Collins, CO
Spicer, RC (1986) Glaciers in the Olympic Mountains, Washington: present distribution and recent variations. (PhD thesis, University of Washington)
Tabor, RW and Cady, WM. (1978) Geologic map of the Olympic Peninsula, Washington. (Misc. Inv. Map 994) US Geological Survey, Reston, VA

Keywords

Related content

Powered by UNSILO

Glacier status and contribution to streamflow in the Olympic Mountains, Washington, USA

  • J.L. Riedel (a1), Steve Wilson (a2), William Baccus (a3), Michael Larrabee (a1), T.J. Fudge (a4) and Andrew Fountain (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.