Skip to main content Accessibility help
×
Home

In situ measurements of till deformation and water pressure

  • Martin Truffer (a1) and William D. Harrison (a1)

Abstract

A newly developed hammer was used to insert two autonomous probes 0.8 m and 2.1 m into clast-rich subglacial till under Black Rapids Glacier, Alaska, USA. Both probes were instrumented with a dual-axis tilt sensor and a pore-water pressure transducer. The data are compared to a 75 day record of surface velocities. Till deformation at depth was found to be highly seasonal: it is significant during an early-season speed-up event, but during long periods thereafter measured till deformation rates are negligible. Both tilt records show rotation around the probe axis, which indicates a change in tilt direction of about 30°. The tilt records are very similar, suggesting spatial homogeneity on the scale of the probe separation (4 m horizontal and 3.3 m vertical). There is evidence that during much of the year sliding of ice over till or deformation of a thin till layer (<20 cm) accounts for at least two-thirds of total basal motion. Basal motion accounts for 50–70% of the total surface motion. The inferred amount of ice–till sliding is larger than that found at the same location in a previous study, when surface velocities were about 10% lower. We suggest that variations in ice–till coupling account for the observed variations in mean annual speed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      In situ measurements of till deformation and water pressure
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      In situ measurements of till deformation and water pressure
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      In situ measurements of till deformation and water pressure
      Available formats
      ×

Copyright

References

Hide All
Amundson, J. 2006. Evidence for stress redistribution beneath Black Rapids Glacier, Alaska. (MS thesis, University of Alaska Fairbanks.)
Blake, E.W. 1992. The deforming bed beneath a surge-type glacier: measurement of mechanical and electrical properties. (PhD thesis, University of British Columbia.)
Blake, E., Clarke, G.K.C. and Gérin, M.C.. 1992. Tools for examining subglacial bed deformation. J. Glaciol., 38(130), 388396.
Boulton, G.S. and Hindmarsh, R.C.A.. 1987. Sediment deformation beneath glaciers: rheology and geological consequences. J. Geophys. Res., 92(B9), 90599082.
Cochran, O.D. 1995. The subglacial hydraulics of the surge-type Black Rapids Glacier, Alaska: a schematic model. (MSc thesis, University of Alaska Fairbanks.)
Engelhardt, H. and Kamb, B.. 1998. Basal sliding of Ice Stream B, West Antarctica. J. Glaciol., 44(147), 223230.
Fischer, U.H. and Clarke, G.K.C.. 2001. Review of subglacial hydromechanical coupling: Trapridge Glacier, Yukon Territory, Canada. Quat. Int., 86, 2943.
Fischer, U.H., Clarke, G.K.C. and Blatter, H.. 1999. Evidence for temporally varying “sticky spots” at the base of Trapridge Glacier, Yukon Territory, Canada. J. Glaciol., 45(150), 352360.
Gades, A.M. 1998. Spatial and temporal variations of basal conditions beneath glaciers and ice sheets inferred from radio echo soundings. (PhD thesis, University of Washington.)
Gudmundsson, G.H., Bauder, A., Lüthi, M., Fischer, U.H. and Funk, M.. 1999. Estimating rates of basal motion and internal ice deformation from continuous tilt measurements. Ann. Glaciol., 28, 247252.
Harrison, W.D., Truffer, M., Echelmeyer, K.A. Pomraning, D.A. Abnett, K.A. and Ruhkick, R.H.. 2004. Probing the till beneath Black Rapids Glacier, Alaska. J. Glaciol., 50(171), 608614.
Heinrichs, T.A., Mayo, L.R. Echelmeyer, K.A. and Harrison, W.D.. 1996. Quiescent-phase evolution of a surge-type glacier: Black Rapids Glacier, Alaska, U.S.A. J. Glaciol., 42(140), 110122.
Hreinsdóttir, S. 2005. Coseismic deformation of the 2001 El Salvador and 2002 Denali Fault earthquakes from GPS geodetic measurements. (PhD thesis, University of Alaska Fairbanks.)
Humphrey, N.F. and Raymond, C.F.. 1994. Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83. J. Glaciol., 40(136), 539552.
Humphrey, N., Kamb, B., Fahnestock, M. and Engelhardt, H.. 1993. Characteristics of the bed of the lower Columbia Glacier, Alaska. J. Geophys. Res., 98(B1), 837846.
Iverson, N.R. 1999. Coupling between a glacier and a soft bed. II. Model results. J. Glaciol., 45(149), 4153.
Iverson, N.R., Hanson, B., Hooke, R.LeB. and Jansson, P.. 1995. Flow mechanism of glaciers on soft beds. Science, 267(5194), 8081.
Iverson, N.R., Hooyer, T.S. and Baker, R.W.. 1998. Ring-shear studies of till deformation: Coulomb-plastic behavior and distributed strain in glacier beds. J. Glaciol., 44(148), 634642.
Iverson, N.R. and 6 others. 2003. Effects of basal debris on glacier flow. Science, 301(5629), 8184.
Johnson, J.V., Prescott, P.R. and Hughes, T.J.. 2004. Ice dynamics preceding catastrophic disintegration of the floating part of Jakobshavn Isbræ. J. Glaciol., 50(171), 492504.
Kamb, B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100.
Mair, D., Willis, I., Fischer, U.H. Hubbard, B., Nienow, P. and Hubbard, A.. 2003. Hydrological controls on patterns of surface, internal and basal motion during three ‘spring events’: Haut Glacier d’Arolla, Switzerland. J. Glaciol., 49(167), 555567.
Martinez, K., Hart, J.K. and Ong, R.. 2004. Environmental sensor networks. IEEE Computer, 37(8), 5056.
Nelson, A., Willis, I. and O’Cofaigh, C.. 2005. Evidence for subglacial sediment deformation and sliding beneath the surge-type glacier, Brúarjökull, Iceland. Ann. Glaciol., 42, 1422.
Nolan, M. 2003. The ‘Galloping Glacier’ trots: decadal-scale speed oscillations within the quiescent phase. Ann. Glaciol., 36, 713.
Nolan, M. and Echelmeyer, K.. 1999a. Seismic detection of transient changes beneath Black Rapids Glacier, Alaska, U.S.A.: I. Techniques and observations. J. Glaciol., 45(149), 119131.
Nolan, M. and Echelmeyer, K.. 1999b. Seismic detection of transient changes beneath Black Rapids Glacier, Alaska, U.S.A.: II. Basal morphology and processes. J. Glaciol., 45(149), 132146.
Raymond, C.F. and Nolan, M.. 2000. Drainage of a glacial lake through an ice spillway. In Debris-Covered Glaciers. Wallingford, Oxon. International Association of Hydrological Sciences, 199207. (IAHS publication 264.)
Raymond, C.F., Benedict, R.J. Harrison, W.D. Echelmeyer, K.A. and Sturm, M.. 1995. Hydrological discharges and motion of Fels and Black Rapids Glaciers, Alaska, U.S.A.: implications for the structure of their drainage systems. J. Glaciol., 41(138), 290304.
Sturm, M. and Cosgrove, D.M.. 1990. Correspondence. An unusual jökulhlaup involving potholes on Black Rapids Glacier, Alaska Range, Alaska, U.S.A. J. Glaciol., 36(122), 125126.
Thorsteinsson, T. and Raymond, C.F.. 2000. Sliding versus till deformation in the fast motion of an ice stream over a viscous till. J. Glaciol., 46(155), 633640.
Truffer, M., Motyka, R.J. Harrison, W.D. Echelmeyer, K.A. Fisk, B. and Tulaczyk, S.. 1999. Subglacial drilling at Black Rapids Glacier, Alaska, U.S.A.: drilling method and sample descriptions. J. Glaciol., 45(151), 495505.
Truffer, M., Harrison, W.D. and Echelmeyer, K.A.. 2000. Glacier motion dominated by processes deep in underlying till. J. Glaciol., 46(153), 213221.
Truffer, M., Echelmeyer, K.A. and Harrison, W.D.. 2001. Implications of till deformation on glacier dynamics. J. Glaciol., 47(156), 123134.
Truffer, M., Craw, P., Trabant, D. and March, R.. 2002. Effects of the M7.9 Denali Fault Earthquake on glaciers in the Alaska Range. EOS Trans. AGU, 83(47). Abstract S72F-1334.
Tulaczyk, S. 1999. Ice sliding over weak, fine-grained tills: dependence of ice–till interactions on till granulometry. In Mickelson, D. M. and Attig, J.W. eds. Glacial processes: past and present. Boulder, CO, Geological Society of America, 159177. (Special Paper 337.)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed