Skip to main content
×
×
Home

Long-wavelength optical logging for high-resolution detection of ash layers in glacier ice

  • WING S. CHAN (a1), MERLIN L. MAH (a1), RYAN C. BAY (a2) and JOSEPH J. TALGHADER (a1)
Abstract

A new instrument for high-resolution optical logging has been built and tested in Antarctica. Its purpose is to obtain records of volcanic products and other scattering features, such as bubbles and impurities, preserved in polar ice sheets, and it achieves this by using long wavelength near-infrared light that is absorbed by the ice before many scattering events occur. Longer wavelengths ensure that the return signal is composed primarily of a single or few backscattering event(s) that limit its spatial spread. The compact optical logger features no components on its body that draw power, which minimizes its size and weight. A prototype of the logger was built and tested at Siple Dome A borehole, and the results were correlated with prior optical logging profiles and records of volcanic products from collected ice core samples.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Long-wavelength optical logging for high-resolution detection of ash layers in glacier ice
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Long-wavelength optical logging for high-resolution detection of ash layers in glacier ice
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Long-wavelength optical logging for high-resolution detection of ash layers in glacier ice
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
Correspondence: Joseph J. Talghader <joey@umn.edu>
References
Hide All
Ackermann, M and 9 others (2006) Optical properties of deep glacial ice at the South Pole. J. Geophys. Res.: Atmos. (1984–2012), 111(D13)
Askebjer, P and 9 others (1997) Optical properties of deep ice at the South Pole: absorption. Appl. Opt., 36(18), 41684180
Bay, RC, Price, PB, Clow, GD and Gow, A (2001) Climate logging with a new rapid optical technique at Siple Dome. Geophys. Res. Lett., 28(24), 46354638
Bramall, N, Bay, R, Woschnagg, K, Rohde, R and Price, P (2005) A deep high-resolution optical log of dust, ash, and stratigraphy in South Pole glacial ice. Geophys. Res. Lett., 32(21)
Breton, DJ (2011) Photonic non-destructive measurement methods for investigating the evolution of polar firn and ice. (Ph.D. thesis, University of Maine)
Chan, WS (2016) MEMS Actuators for Tuning Nano-Scale Airgaps in Heterostructures and Optical Instrumentation for Studying Glacier Ice in Antarctica. (Ph.D. thesis, University of Minnesota, Twin Cities)
Coulter, SE and 8 others (2012) Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. J. Geophys. Res.: Atmos., 117(D21)
Cuffey, K and 5 others (2000) Deformation properties of subfreezing glacier ice: role of crystal size, chemical impurities, and rock particles inferred from in situ measurements. J. Geophys. Res.: Solid Earth (1978–2012) , 105(B12), 2789527915
Dahl-Jensen, D (1985) Determination of the flow properties at Dye 3, south Greenland, by bore-hole-tilting measurements and perturbation modelling. J. Glaciol., 31(108), 9298
Dahl-Jensen, D and Gundestrup, N (1987) Constitutive properties of ice at Dye 3, Greenland. Phys. Basis Ice Sheet Model., 170, 3143
Gow, AJ and Meese, D (2007) Physical properties, crystalline textures and c-axis fabrics of the Siple Dome (Antarctica) ice core. J. Glaciol., 53(183), 573584
Gow, AJ and Williamson, T (1975) Gas inclusions in the Antarctic ice sheet and their glaciological significance. J. Geophys. Res., 80(36), 51015108
Hawley, RL and Morris, EM (2006) Borehole optical stratigraphy and neutron-scattering density measurements at Summit, Greenland. J. Glaciol., 52(179), 491496
Hawley, RL, Waddington, ED, Alley, RB and Taylor, KC (2003) Annual layers in polar firn detected by borehole optical stratigraphy. Geophys. Res. Lett., 30(15)
Keiser, G (1983) Optical fiber communications. McGraw-Hill Science, Engineering and Mathematics, New York
Kurbatov, AV and 6 others (2006) A 12 000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica. J. Geophys. Res.: Atmos. (1984–2012), 111(D12)
Lowe, DJ (2011) Tephrochronology and its application: a review. Quat. Geochronol., 6(2), 107153
Lund Myhre, C, Grothe, H, Gola, A and Nielsen, CJ (2005) Optical constants of HNO 3 = H 2 O and H 2 SO 4 = HNO 3 = H 2 O at low temperatures in the infrared region. J. Phys. Chem. A, 109(32), 71667171
Marshall, SJ (2005) Recent advances in understanding ice sheet dynamics. Earth Planet. Sci. Lett., 240(2), 191204
Price, PB and Bergström, L (1997) Optical properties of deep ice at the South Pole: scattering. Appl. Opt., 36(18), 41814194
Ram, M, Illing, M, Weber, P, Koenig, G and Kaplan, M (1995) Polar ice stratigraphy from laser-light scattering: Scattering from ice. Geophys. Res. Lett., 22(24), 35253527
Robock, A (2000) Volcanic eruptions and climate. Rev. Geophys., 38(2), 191219
Taylor, KC and 9 others (2004) Dating the Siple Dome (Antarctica) ice core by manual and computer interpretation of annual layering. J. Glaciol., 50(170), 453461
Thorsteinsson, T, Waddington, E, Taylor, K, Alley, R and Blankenship, D (1999) Strain-rate enhancement at Dye 3, Greenland. J. Glaciol., 45(150), 338345
Warren, SG and Brandt, RE (2008) Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res.: Atmos. (1984–2012), 113(D14)
Zielinski, GA (2000) Use of paleo-records in determining variability within the volcanism–climate system. Quat. Sci. Rev., 19(1), 417438
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed