Skip to main content Accessibility help

Microseismic activity within a serac zone in an alpine glacier (Glacier d’Argentière, Mont Blanc, France)

  • Pierre-François Roux (a1), David Marsan (a1), Jean-Philippe Métaxian (a1), Gareth O’Brien (a2) and Luc Moreau (a3)...


A passive seismic study was carried out underneath Glacier d’Argentière, Mont Blanc, France, where an array of seismometers was installed in a subglacial access tunnel. The data show a very high emissivity from the glacier. Fracturing can be discriminated from serac falls using the signal characteristics. We apply seismic array methods to locate the sources of these signals, using a two-step grid search in the parameter space. Four clusters of activity are found close to the network, showing that this fracturing does not take place uniformly over the glacier, but rather in isolated small zones. We compute a local magnitude using regional earthquakes for calibration. The magnitudes follow a classical Gutenberg–Richter law in the range M L = −3 to 0.15, showing that no characteristic size events dominate the process. We suggest that those spatial clusters of icequakes could reveal the heterogeneous nature of the friction at the base of the glacier, with patches of high frictional stresses locally generating intense fracturing within the ice mass.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Microseismic activity within a serac zone in an alpine glacier (Glacier d’Argentière, Mont Blanc, France)
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Microseismic activity within a serac zone in an alpine glacier (Glacier d’Argentière, Mont Blanc, France)
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Microseismic activity within a serac zone in an alpine glacier (Glacier d’Argentière, Mont Blanc, France)
      Available formats



Hide All
Ahlmann, H.W. 1935. Contribution to the physics of glaciers. Geogr. J., 86(2), 97113.
Allen, R.V. 1978. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am., 68(5), 15211532.
Almendros, J., Ibáñez, J., Alguacil, G. and Del Pezzo, E.. 1999. Array analysis using circular-wave-front geometry: an application to locate the nearby seismo-volcanic source. Geophys. J. Int., 136(1), 159170.
Anandakrishnan, S. and Bentley, C.R.. 1993. Micro-earthquakes beneath Ice Streams B and C, West Antarctica: observations and implications. J. Glaciol., 39(133), 455462.
Blankenship, D.D., Anandakrishnan, S., Kempf, J.L. and Bentley, C.R.. 1987. Microearthquakes under and alongside Ice Stream B, Antarctica, detected by a new passive seismic array. Ann. Glaciol., 9, 3034.
Chouet, B. 1996. New methods and future trends in seismological volcano monitoring. In Scarpa, R. and Tilling, R.I., eds. Monitoring and mitigation of volcano hazards. Berlin, Springer, 2398.
Clarke, G.K.C. 2005. Subglacial processes. Annu. Rev. Earth Planet. Sci., 33, 247276.
Crary, A. P. 1963. Results of the United States traverse in East Antarctica, 1958–1961. IGY Glaciol. Rep. Ser. 7.
D’Amico, S. and Maiolino, V.. 2005. Local magnitude estimate at Mt. Etna. Ann. Geofis., 48(2), 215229.
Danesi, S., Bannister, S. and Morelli, A.. 2007. Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier. Earth Planet. Sci. Lett., 253(1–2), 151158.
Deichmann, N., Ansorge, J. and Röthlisberger, H.. 1979. Observations of glacier seismicity on Unteraargletscher. J. Glaciol., 23(89), 409.
Deichmann, N., Ansorge, J., Scherbaum, F., Aschwanden, A., Bernardi, F. and Gudmundsson, G.H.. 2000. Evidence for deep icequakes in an Alpine glacier. Ann. Glaciol., 31, 8590.
Ekström, G., Nettles, M. and Abers, G.A.. 2003. Glacial earthquakes. Science, 302(5645), 622624.
Frankel, A., Hough, S., Friberg, P. and Busby, R.. 1991. Observations of Loma Prieta aftershocks from a dense array in Sunnyvale, California. Bull. Seismol. Soc. Am., 81(5), 19001922.
Goodman, D.J., King, G.C.P., Millar, D.H.M. and Robin, 1979. Pressure-melting effects in basal ice of temperate glaciers: laboratory studies and field observations under Glacier d’Argentière. J. Glaciol., 23(89), 259272.
Got, J.-L., Fréchet, J. and Klein, F.W.. 1994. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. J. Geophys. Res., 99(B8), 15,37515,386.
Hubbard, B. 2002. Direct measurement of basal motion at a hard-bedded, temperate glacier: Glacier de Tsanfleuron, Switzerland. J. Glaciol., 48(160), 18.
Iken, A. 1977. Variations of surface velocities of some Alpine glaciers measured at intervals of a few hours: comparison with Arctic glaciers. Z. Gletscherkd. Glazialgeol., 13(1–2), 2335.
Jansson, P., Kohler, J. and Pohjola, V.A..1996. Characteristics of basal ice at Engabreen, northern Norway. Ann. Glaciol., 22, 114120.
Jenkins, G.M. and Watts, D.G.. 1968. Spectral analysis and its applications. San Francisco, Holden-Day.
Kamb, B. 1970. Sliding motion of glaciers: theory and observation. Rev. Geophys. Space Phys., 8(4), 673728.
Kamb, B. and LaChapelle, E.. 1964. Direct observation of the mechanism of glacier sliding over bedrock. J. Glaciol., 5(38), 159172.
Lliboutry, L. 1968. General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol., 7(49), 2158.
Lliboutry, L. 1987. Realistic, yet simple bottom boundary conditions for glaciers and ice sheets. J. Geophys. Res., 92(B9), 91019109.
McHugh, S. and Johnston, M.J.S.. 1977. An analysis of coseismic tilt changes from an array in central California. J. Geophys. Res., 82(B36), 56925698.
Monteiller, V., Got, J.-L., Virieux, J. and Okubo, P.. 2005. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano. J. Geophys. Res., 110(B12), B12306. (10.1029/2004JB003466.)
Mykkeltveit, S., Ringdal, F., Kværna, T. and Alewine, R.W.. 1990. Application of regional arrays in seismic verification research. Bull. Seismol. Soc. Am., 80(6B), 17771800.
Neave, K.G. and Savage, J.C.. 1970. Icequakes on the Athabasca Glacier. J. Geophys. Res., 75(8), 13511362.
Nye, J.F. 1970. Glacier sliding without cavitation in a linear viscous approximation. Proc. R. Soc. London, Ser. A, 315(1522), 381403.
O’Brien, G.S. and Bean, C.J.. 2004. A 3D discrete numerical elastic lattice method for seismic wave propagation in heterogeneous media with topography. Geophys. Res. Lett., 31(14), L14608. (10.1029/2004GL020069.)
Ogata, Y. and Katsura, K.. 1993. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophys. J. Int., 113(3), 727738.
Plewes, L.A. and Hubbard, B.. 2001. A review of the use of radio-echo sounding in glaciology. Progr. Phys. Geogr., 25(2), 203236.
Podvin, P. and Lecomte, I.. 1991. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys. J. Int., 105(1), 271284.
Reynaud, L., Donnou, D., Perrin, J., Rado, C., Ribola, R. and Vincent, C.. 1988. Caractéristiques de la vitesse de glissement de la glace sur le lit rocheux, Glacier d’Argentière, Massif du Mont Blanc, France. C. R. Acad. Sci. [Paris], Sér. IIA, 307, 15191522.
Richter, C. 1935. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 25(1), 132.
Richter, C.F. 1958. Elementary seismology. San Francisco, W.H. Freeman.
Robin, G. de Q. 1976. Is the basal ice of a temperate glacier at the pressure melting point? J. Glaciol., 16(74), 183196.
Rost, S. and Thomas, C.. 2002. Array seismology: methods and applications. Rev. Geophys., 40(3), 1008. (10.1029/2000RG000100.)
Thouvenot, F. and Fréchet, J.. 2006. Seismicity along the northwestern edge of the Adria Microplate. In Pinter, N., Gyula, G., Weber, J., Stein, S. and Medak, D., eds. The Adria Microplate: GPS geodesy, tectonics and hazards. Dordrecht, Springer, 335349.
Thouvenot, F., Fréchet, J., Guyoton, F., Guiguet, R. and Jenatton, L.. 1990. Sismalp: an automatic phone-interrogated seismic network for the western Alps. Cah. Centre Euro. Géodynam. Séismol., 1, 110.
Uhrhammer, R.A. and Collins, E.R.. 1990. Synthesis of Wood– Anderson seismograms from broadband digital records. Bull. Seismol. Soc. Am., 80(3), 702716.
Vivian, R. 1971. Le laboratoire sous-glaciaire d’Argentière. Boll. Com. Glaciol. Ital., 2(19), 273279.
Vivian, R. and Bocquet, G.. 1973. Subglacial cavitation phenomena under the Glacier d’Argentière, Mont Blanc, France. J. Glaciol., 12(66), 439451.
Weaver, C.S. and Malone, S.D.. 1979. Seismic evidence for discrete glacier motion at the rock–ice interface. J. Glaciol., 23(89), 171184.
Weertman, J. 1957. On the sliding of glaciers. J. Glaciol., 3(21), 3338.
Weertman, J. 1964. The theory of glacier sliding. J. Glaciol., 5(39), 287303.
Wessel, P. and Smith, W.H.F.. 1991. Free software helps map and display data. Eos, 72(41), 441, 445446.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed