Skip to main content
×
×
Home

Patterns in glacial-earthquake activity around Greenland, 2011–13

  • KIRA G. OLSEN (a1) and MEREDITH NETTLES (a1)
Abstract

Glacial earthquakes are caused by large iceberg calving events, which are an important mechanism for mass loss from the Greenland ice sheet. The number of glacial earthquakes in Greenland has increased sixfold over the past two decades. We use teleseismic surface waves to analyze the 145 glacial earthquakes that occurred in Greenland from 2011 through 2013, and successfully determine source parameters for 139 events at 13 marine-terminating glaciers. Our analysis increases the number of events in the glacial-earthquake catalog by nearly 50% and extends it to 21 years. The period 2011–13 was the most prolific 3-year period of glacial earthquakes on record, with most of the increase over earlier years occurring at glaciers on Greenland's west coast. We investigate changes in earthquake productivity and geometry at several individual glaciers and link patterns in glacial-earthquake production and cessation to the absence or presence of a floating ice tongue. We attribute changes in earthquake force orientations to changes in calving-front geometry, some of which occur on timescales of days to months. Our results illustrate the utility of glacial earthquakes as a remote-sensing tool to identify the type of calving event, the grounded state of a glacier, and the orientation of an active calving front.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Patterns in glacial-earthquake activity around Greenland, 2011–13
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Patterns in glacial-earthquake activity around Greenland, 2011–13
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Patterns in glacial-earthquake activity around Greenland, 2011–13
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Corresponding author
Correspondence: Kira G. Olsen <kolsen@ldeo.columbia.edu>
References
Hide All
Amundson, JM and Truffer, M (2010) A unifying framework for iceberg-calving models. J. Glaciol., 56(199), 822830 (doi: 10.3189/002214310794457173)
Amundson, JM and 5 others (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22), L22501 (doi: 10.1029/2008GL035281)
Amundson, JM and 5 others (2010) Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res.: Earth Surf., 115(F1), F01005 (doi: 10.1029/2009JF001405)
Bevan, SL, Luckman, AJ and Murray, T (2012) Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers. Cryosphere, 6(5), 923937 (doi: 10.5194/tc-6-923-2012)
Carr, JR, Vieli, A and Stokes, C (2013) Influence of sea ice decline, atmospheric warming, and glacier width on marine-terminating outlet glacier behavior in northwest Greenland at seasonal to interannual timescales. J. Geophys. Res.: Earth Surf., 118(3), 12101226 (doi: 10.1002/jgrf.20088)
Cassotto, R, Fahnestock, M, Amundson, JM, Truffer, M and Joughin, I (2015) Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. J. Glaciol., 61(225), 7688 (doi: 10.3189/2015JoG13J235)
Chauché, N and 8 others(2014) Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers, Cryosphere, 8(4), 14571468 (doi: 10.5194/tc-8-1457-2014)
Dietrich, R and 6 others (2007) Jakobshavn Isbræ, west Greenland: Flow velocities and tidal interaction of the front area from 2004 field observations. J. Geophys. Res.: Earth Surf., 112(F3), F03S21 (doi: 10.1029/2006JF000601)
Dziewonski, AM and Anderson, DL (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297356 (doi: 10.1016/0031-9201(81)90046-7)
Ekström, G (2006) Global detection and location of seismic sources by using surface waves. Bull. Seismol. Soc. Am., 96(4A), 12011212 (doi: 10.1785/0120050175)
Ekström, G, Nettles, M and Abers, GA (2003) Glacial earthquakes. Science, 302(5645), 622624 (doi: 10.1126/science.1088057)
Ekström, G, Nettles, M and Tsai, VC (2006) Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311(5768), 17561758 (doi: 10.1126/science.1122112)
Ekström, G, Nettles, M and Dziewoński, AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200, 19 (doi: 10.1016/j.pepi.2012.04.002)
Enderlin, EM and 5 others (2014) An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41(3), 866872 (doi: 10.1002/2013GL059010)
Harig, C and Simons, FJ (2016) Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal cycles and decadal trends. Geophys. Res. Lett., 43(7), 31503159 (doi: 10.1002/2016GL067759)
Hogg, AE, Shepherd, A, Gourmelen, N and Engdahl, M (2016) Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland. J. Glaciol., 62(236), 11041114 (doi: 10.1017/jog.2016.83)
Holland, DM, Thomas, RH, De Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)
Howat, IM and Eddy, A (2011) Multi-decadal retreat of Greenland's marine-terminating glaciers. J. Glaciol., 57(203), 389396 (doi: 10.3189/002214311796905631)
Howat, IM, Joughin, I, Tulaczyk, S and Gogineni, S (2005) Rapid retreat and acceleration of Helheim glacier, east Greenland. Geophys. Res. Lett., 32(22), L22502 (doi: 10.1029/2005GL024737)
Howat, IM, Joughin, I and Scambos, TA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 15591561 (doi: 10.1126/science.1138478)
James, TD, Murray, T, Selmes, N, Scharrer, K and O'Leary, M (2014) Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier. Nat. Geosci., 7(8), 593596 (doi: 10.1038/NGEO2204)
Jensen, TS, Box, JE and Hvidberg, CS (2016) A sensitivity study of annual area change for Greenland ice sheet marine terminating outlet glaciers: 1999–2013. J. Glaciol., 62(231), 7281 (doi: 10.1017/ jog.2016.12)
Joughin, I and 8 others (2008a) Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res.: Earth Surf., 113(F1), F01004 (doi: 10.1029/2007JF000837)
Joughin, I and 7 others (2008b) Continued evolution of Jakobshavn Isbræ following its rapid speedup. J. Geophys. Res.: Earth Surf., 113(F4), F04006 (doi: 10.1029/2008JF001023)
Joughin, I, Smith, BE, Shean, DE and Floricioiu, D (2014) Brief communication: Further summer speedup of Jakobshavn Isbræ. Cryosphere, 8, 209214 (doi: 10.5194/tc-8-209-2014)
Kawakatsu, H (1989) Centroid single force inversion of seismic waves generated by landslides. J. Geophys. Res.: Solid Earth, 94(B9), 1236312374 (doi: 10.1029/JB094iB09p12363)
Kehrl, LM, Joughin, I, Shean, DE, Floricioiu, D and Krieger, L (2017) Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016. J. Geophys. Res.: Earth Surf., 122 (doi: 10.1002/2016JF004133)
McFadden, EM, Howat, IM, Joughin, I, Smith, BE and Ahn, Y (2011) Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009). J. Geophys. Res.: Earth Surf., 116(F2), F02022 (doi: 10.1029/2010JF001757)
Moon, T, Joughin, I, Smith, B and Howat, I (2012) 21st-century evolution of Greenland outlet glacier velocities. Science, 336(6081), 576578 (doi: 10.1126/science.1219985)
Murray, T and 10 others (2015a) Reverse glacier motion during iceberg calving and the cause of glacial earthquakes. Science, 349(6245), 305308 (doi: 10.1126/science.aab0460)
Murray, T and 10 others (2015b) Extensive retreat of Greenland tidewater glaciers, 2000-2010. Arct. Antarct. Alp. Res., 47(3), 427447 (doi: 10.1657/AAAR0014-049)
Murray, T and 9 others (2015c) Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland. J. Geophys. Res.: Earth Surf., 120(6), 964982 (doi: 10.1002/2015JF003531)
Nettles, M and Ekström, G (2010) Glacial earthquakes in Greenland and Antarctica. Annu. Rev. Earth Planet. Sci., 38(1), 467491 (doi: 10.1146/annurev-earth-040809-152414)
Nettles, M and 10 others (2008) Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett., 35(24), L24503 (doi: 10.1029/2008GL036127)
Rignot, E and 9 others (2016) Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland. Geophys. Res. Lett., 43(6), 26672674 (doi: 10.1002/2016GL067832)
Seale, A, Christoffersen, P, Mugford, RI and O'Leary, M (2011) Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res.: Earth Surf., 116(F3), F03013 (doi: 10.1029/2010JF001847)
Sergeant, A and 6 others (2016) Complex force history of a calving-generated glacial earthquake derived from broadband seismic inversion. Geophys. Res. Lett., 43(3), 2015GL066785 (doi: 10.1002/2015GL066785)
Tsai, VC and Ekström, G (2007) Analysis of glacial earthquakes. J. Geophys. Res.: Earth Surf., 112(F3), F03S22 (doi: 10.1029/2006JF000596)
Tsai, VC, Rice, JR and Fahnestock, M (2008) Possible mechanisms for glacial earthquakes. J. Geophys. Res.: Earth Surf., 113(F3), F03014 (doi: 10.1029/2007JF000944)
Veitch, SA and Nettles, M (2012) Spatial and temporal variations in Greenland glacial-earthquake activity, 1993–2010. J. Geophys. Res.: Earth Surf., 117(F4), ISSN (doi: 10.1029/2012JF002412)
Veitch, SA and Nettles, M (2017) Assessment of glacial-earthquake source parameters. J. Glaciol., 63(241), 867876 (doi: 10.1017/jog.2017.52)
Velicogna, I, Sutterley, TC and van den, Broeke MR (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett., 41(22), 81308137 (doi: 10.1002/2014GL061052)
Walter, F and 5 others (2012) Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland. J. Geophys. Res.: Earth Surf., 117(F1), F01036 (doi: 10.1029/2011JF002132)
York, AV, Frey, KE and Das, SB (2016) Analyzing the effects of sea ice variability on marine-terminating glacier retreat, central west Greenland. Number 74A2090 in Symposium on Interactions of Ice Sheets and Glaciers with the Ocean, International Glaciological Society, La Jolla, California
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 13
Total number of PDF views: 163 *
Loading metrics...

Abstract views

Total abstract views: 180 *
Loading metrics...

* Views captured on Cambridge Core between 28th December 2017 - 17th August 2018. This data will be updated every 24 hours.