Skip to main content Accessibility help

A porosity-based Biot model for acoustic waves in snow

  • Rolf Sidler (a1)


Phase velocities and attenuation in snow cannot be explained by the widely used elastic or viscoelastic models for acoustic wave propagation. Instead, Biot’s model of wave propagation in porous materials should be used. However, the application of Biot’s model is complicated by the large property space of the underlying porous material. Here constant properties for ice and air, and empirical relationships are used to estimate unknown porous properties from snow porosity. Using this set of equations, phase velocities and plane wave attenuation of shear- and compressional waves are predicted as functions of porosity or density. For light snow the peculiarity was found that the velocity of the first compressional wave is lower than that of the second compressional wave that is commonly referred to as the ‘slow’ wave. The reversal of the velocities comes with an increase of attenuation for the first compressional wave. This is in line with the common observation that sound is strongly absorbed in light snow. The results have important implications for the use of acoustic waves to evaluate snow properties and to numerically simulate wave propagation in snow.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A porosity-based Biot model for acoustic waves in snow
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A porosity-based Biot model for acoustic waves in snow
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A porosity-based Biot model for acoustic waves in snow
      Available formats


Corresponding author

Correspondence: Rolf Sidler <>


Hide All
Albert, DG (2001) Acoustic waveform inversion with application to seasonal snow covers. J. Acoust. Soc. Am., 109, 91101 (doi:10.1121/1.1328793)
Albert, DG, Decato, SN and Perron, FE (2009) Experimental measurements of the Biot slow wave in natural snow covers. In Proceedings of the Fourth Biot Conference on Poromechanics. integrated PoroMechanics Institute, University of Oklahoma, Norman, OK, 724729
Albert, DG, Taherzadeh, S, Attenborough, K, Boulanger, P and Decato, SN (2013) Ground vibrations produced by surface and near-surface explosions. Appl. Acoust., 74(11), 12791296 (doi: 10.1016/j.apacoust.2013.03.006)
Attenborough, K and Buser, O (1988) On the application of rigid-porous models to impedance data for snow. J. Sound Vibrat., 124(2), 315327 (doi: 10.1016/S0022-460X(88)80190-1)
Attenborough, K, Bashir, I, Shin, HC and Taherzadeh, S (2012) Slow waves, surface waves and their applications. In Acoustics 2012. Société Française d’Acoustique, Nantes, 18771882
Attenborough, K, Bashir, I and Taherzadeh, S (2013) Surface waves over rigid-porous and rough surfaces. J. Acoust. Soc. Am., 133(5), 33513351 (doi: 10.1121/1.4805688)
Bader, H (1952) Preliminary investigations of some physical properties of snow. Engineering Experiment Station, Institute of Technology, University of Minnesota, Minneapolis, MN
Bear, J (1972) Dynamics of fluids in porous media. American Elsevier, New York
Berryman, JG (1980) Confirmation of Biot’s theory. Appl. Phys. Lett., 37, 382384 (doi: 10.1063/1.91951)
Biot, MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc.Am., 28, 168178 (doi: 10.1121/1.1908239)
Biot, MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust.Soc. Am., 28, 179191 (doi: 10.1121/1.1908241)
Biot, MA (1962) Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33, 14821498 (doi: 10.1063/1.1728759)
Bourbié, T, Coussy, O and Zinszner, B (1987) Acoustics of porous media. Edition Technip, Paris
Buser, O (1986) A rigid-frame model of porous media for the acoustic impedance of snow. J. Sound Vibrat., 111, 7192 (doi: 10.1016/S0022-460X(86)81424-9)
Calonne, N and 6 others (2012) 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy. Cryosphere, 6, 939951 (doi: 10.5194/tc-6-939-2012)
Carcione, JM (2007) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media, 2nd edn. Elsevier, Amsterdam
Carcione, JM and Picotti, S (2006) P-wave seismic attenuation by slow-wave diffusion: effects of inhomogeneous rock properties. Geophysics, 71, O1O8 (doi: 10.1190/1.2194512)
Darcy, H (1856) Les fontaines publiques de la ville de Dijon. Dalmont, Paris
Deresiewicz, H and Skalak, R (1963) On uniqueness in dynamic poroelasticity. Bull. Seismol. Soc. Am., 53, 783788
Domine, F, Taillandier, AS and Simpson, WR (2007) A parameterization of the specific surface area of seasonal snow for field use and for models of snowpack evolution. J. Geophys. Res., 112, F02031 (doi: 10.1029/2006JF000512)
Embleton, TF (1996) Tutorial on sound propagation outdoors. J. Acoust. Soc. Am., 100(1), 3148 (doi: 10.1121/1.415879)
Fellah, ZEA, Chapelon, JY, Berger, S, Lauriks, W and Depollier, C (2004) Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J. Acoust. Soc. Am., 116(1), 6173 (doi: 10.1121/1.1755239)
Garat, J, Krief, M, Stellingwerff, J and Ventre, J (1990) A petrophysical interpretation using the velocities of P and S waves (full waveform sonic). Log Analyst, 31, 355369
Geertsma, J and Smit, D (1961) Some aspects of elastic wave propagation in fluid-saturated porous solids. Geophysics, 26(2), 169181 (doi: 10.1190/1.1438855)
Gubler, H (1977) Artificial release of avalanches by explosives. J. Glaciol., 19, 419429
Herbert, B and 6 others (2005) Polychlorinated naphthalenes in air and snow in the Norwegian Arctic: a local source or an Eastern Arctic phenomenon? Sci. Total Environ., 342(1), 145160 (doi: 10.1016/j.scitotenv.2004.12.029)
Hobbs, PV (1974) Ice physics. Clarendon Press, Oxford
Hoffman, JJ, Nelson, AM, Holland, MR and Miller, JG (2012) Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography. J. Acoust. Soc. Am., 132(3), 18301837 (doi: 10.1121/1.4739455)
Jocker, J and Smeulders, D (2009) Ultrasonic measurements on poroelastic slabs: determination of reflection and transmission coefficients and processing for Biot input parameters. Ultrasonics, 49, 319330 (doi: 10.1016/j.ultras.2008.10.006)
Johnson, DL, Koplik, J and Dashen, R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 176, 379402
Johnson, JB (1982) On the application of Biot’s theory to acoustic wave propagation in snow. Cold Reg. Sci. Technol., 6, 4960 (doi: 10.1016/0165-232X(82)90044-1)
Judson, A and Doesken, N (2000) Density of freshly fallen snow in the central Rocky Mountains. Bull. Am. Meteorol. Soc., 81(7), 15771587 (doi: 10.1175/1520-0477(2000)081<1577:DOFF-SI>2.3.CO;2)
Kapil, J, Datt, P, Kumar, A, Singh, K, Kumar, V and Satyawali, P (2014) Multi-sensor couplers and waveguides for efficient detection of acoustic emission behavior of snow. Cold Reg. Sci. Technol., 101, 113 (doi: 10.1016/j.coldregions.2014.01.003)
Kinar, NJ and Pomeroy, JW (2009) Automated determination of snow water equivalent by acoustic reflectometry. IEEE Trans. Geosci. Remote Sens., 47, 31613167 (doi: 10.1109/TGRS.2009. 2019730)
Lacroix, P and 6 others (2012) Monitoring of snow avalanches using a seismic array: location, speed estimation, and relationships to meteorological variables. J. Geophys. Res., 117(F1), F01034 (doi: 10.1029/2011JF002106)
Legagneux, L, Cabanes, A and Dominé, F (2002) Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K. J. Geophys. Res., 107(D17), 4335 (doi: 10.1029/2001JD001016)
Lide, DR (2005) CRC handbook of chemistry and physics, 86th edn. CRC Press, Boca Raton, FL
Marco, O, Buser, O and Villemain, P (1996) Analysis of a rigid frame model of porous media for the acoustic properties of dense snow. J. Sound Vibrat., 196, 439451 (doi: 10.1006/jsvi.1996.0494)
Marco, O, Buser, O, Villemain, P, Touvier, F and Revol, H (1998) Acoustic impedance measurement of snow density. Ann. Glaciol., 26, 9296
Mavko, G and Nur, A (1997) The effect of a percolation threshold in the Kozeny–Carman relation. Geophysics, 62(5), 14801482 (doi: 10.1190/1.1444251)
Mavko, G, Mukerji, T and Dvorkin, J (2009) The rock physics handbook: tools for seismic analysis in porous media, 2nd edn. Cambridge University Press, Cambridge
Maysenhölder, W, Heggli, M, Zhou, X, Zhang, T, Frei, E and Schneebeli, M (2012) Microstructure and sound absorption of snow. Cold Reg. Sci. Technol., 83, 312 (doi: 10.1016/j.coldregions.2012.05.001)
Mellor, M (1975) A review of basic snow mechanics. IAHS Publ. 114 (Symposium at Grindelwald 1974 – Snow Mechanics), 251291
Mellor, M (1983) Mechanical behavior of sea ice. CRREL Monogr. 83-1
Nicolas, J, Berry, JL and Daigle, G (1985) Propagation of sound above a finite layer of snow. J. Acoust. Soc. Am., 77(1), 6773 (doi: 10.1121/1.391902)
O’Connell, R and Budiansky, B (1978) Measures of dissipation in viscoelastic media. Geophys. Res. Lett., 5(1), 58 (doi: 10.1029/GL005i001p00005)
Oura, H (1952) Reflection of sound at snow surface and mechanism of sound propagation in snow. Low Temp. Sci., 9, 179186
Pride, SR (2005) Relationships between seismic and hydrological properties. In Hydrogeophysics. Springer, Berlin, 253291
Reuter, B, Proksch, M, Loewe, H, Van Herwijnen, A and Schweizer, J (2013) On how to measure snow mechanical properties relevant to slab avalanche release. In Proceedings of the International Snow Science Workshop, 7–11 October 2013, Grenoble, France. International Snow Science Workshop, 711
Roch, A (1948) Discussion sur la valeur du nombre de Poisson m pour la neige, Davos Weissfluhjoch. Eidg. Inst. Schnee-Lawinenforsch. Interner Ber. 89
Schneebeli, M (2004) Numerical simulation of elastic stress in the microstructure of snow. Ann. Glaciol., 38, 339342 (doi: 10.3189/172756404781815284)
Schulson, EM (1999) The structure and mechanical behavior of ice. JOM J. Mineral. Metal. Mater. Soc., 51, 2127
Shapiro, LH, Johnson, JB, Sturm, M and Blaisdell, GL (1997) Snow mechanics: review of the state of knowledge and applications. CRREL Tech. Rep. 97.3
Shin, HC, Taherzadeh, S, Attenborough, K, Whalley, W and Watts, C (2013) Non-invasive characterization of pore-related and elastic properties of soils in linear Biot–Stoll theory using acoustic-to-seismic coupling. Eur. J. Soil Sci., 64(3), 308323 (doi: 10.1111/ejss.12000)
Sidler, R, Carcione, JM and Holliger, K (2010) Simulation of surface waves in porous media. Geophys. J. Int., 183, 820832 (doi:10.1111/j.1365-246X.2010.04725.x)
Smeulders, DMJ (2005) Experimental evidence for slow compressional waves. J. Eng. Mech., 31, 908917 (doi: 10.1061/(ASCE)0733-9399(2005)131:9(908))
Smith, N (1969) Determining the dynamic properties of snow and ice by forced vibration. (Technical report) Defense Technical Information Center, US Department of Defense, Cameron Station, Alexandria, VA
Sommerfeld, R (1982) A review of snow acoustics. Rev. Geophys., 20(1), 6266 (doi: 10.1029/RG020i001p00062)
Sommerfeld, R and Gubler, H (1983) Snow avalanches and acoustic emissions. Ann. Glaciol, 4, 271276
Surinach, E, Sabot, F, Furdada, G and Vilaplana, J (2000) Study of seismic signals of artificially released snow avalanches for monitoring purposes. Phys. Chem. Earth B, 25(9), 721727 (doi: 10.1016/S1464-1909(00)00092-7)
Terzaghi, K (1923) Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannung-serscheinungen. Akad. Wiss. Wien Math.-Naturwiss. Kl. Sitzungber., 132, 125138
Van Herwijnen, A and Schweizer, J (2011) Monitoring avalanche activity using a seismic sensor. Cold Reg. Sci. Technol., 69(2), 165176 (doi: 10.1016/j.coldregions.2011.06.008)
Watson, RB (1948) On the propagation of sound over snow. J. Acoust. Soc. Am., 20(6), 846848 (doi: 10.1121/1.1906447)
Yamada, T, Hasemi, T, Izumi, K and Sato, A (1974) On the dependencies of the velocities of P-and S-waves and thermal conductivity of snow upon the texture of snow. Contrib. Inst. Low Temp. Sci., 32, 7180
Zwikker, C and Kosten, C (1947) Sound absorbing materials. Elsevier, Amsterdam
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed