Skip to main content
×
×
Home

Seismic and radar observations of subglacial bed forms beneath the onset zone of Rutford Ice Stream, Antarctica

  • Edward C. King (a1), John Woodward (a2) and Andy M. Smith (a1)
Abstract

We present seismic and radar data from the onset region of Rutford Ice Stream, West Antarctica, which show the form and internal structure of a variety of bed forms beneath an active ice stream. The ice flow in the area of our survey accelerates from 72 to >200 m a–1, the ice is 2200–3200 m thick, and the bed of the ice stream lies up to 2000 m below present sea level. We have imaged the internal structure of the bed forms with seismic reflection techniques and also observed radar reflections from below the bed in some circumstances. We observed a transverse moraine 2 km wide and 1.5 km long beneath the slower-flowing part of the ice stream, which we interpret to be composed of unconsolidated sediment undergoing active deformation near the ice–sediment interface. We observed drumlins of classical form with elongation ratios of between 1:1.5 and 1:4.0 where the surface flow speed exceeded 95 m a–1. The conformity of the internal structure of the bed forms with the ice base suggests that the bed forms are active depositional features in congruence with the observation of a contemporary drumlin-forming episode in the distal part of the same ice stream. These observations provide the first direct evidence of the association between ice-stream flow speed and bed-form shape.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Seismic and radar observations of subglacial bed forms beneath the onset zone of Rutford Ice Stream, Antarctica
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Seismic and radar observations of subglacial bed forms beneath the onset zone of Rutford Ice Stream, Antarctica
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Seismic and radar observations of subglacial bed forms beneath the onset zone of Rutford Ice Stream, Antarctica
      Available formats
      ×
Copyright
References
Hide All
Alley, R.B. Blankenship, D.D. Bentley, C.R. and S.T. Rooney. 1986. Deformation of till beneath Ice Stream B, West Antarctica. Nature, 322(6074 5759.
Atre, S.R. and Bentley, C.R.. 1993. Laterally varying basal conditions beneath Ice Streams B and C, West Antarctica. J. Glaciol., 39(133 507514.
Blankenship, D.D. and 9 others. 2001. Geologic controls on the initiation of rapid basal motion for West Antarctic ice streams: a geophysical perspective including new airborne radar sounding and laser altimetry results. InAlley, R.B. and R.A. Bindschadler, eds. The West Antarctic ice sheet: behavior and environment. Washington, DC, American Geophysical Union, 105121. (Antarctic Research Series 77.)
Boulton, G.S. 1987. A theory of drumlin formation by subglacial sediment deformation. In Menzies, J. and J. Rose, eds. Drumlin Symposium. Rotterdam, A.A. Balkema, 2580.
Canals, M. Urgeles, R. and A.M. Calafat. 2000. Deep sea-floor evidence of past ice streams off the Antarctic Peninsula. Geology, 28(1 3134.
Canals, M. and 7 others. 2002. Seafloor evidence of a subglacial sedimentary system off the northern Antarctic peninsula. Geology, 30(7), 603606.
Clark, C.D. 1993. Mega-scale glacial lineations and cross-cutting ice-flow landforms. Earth Surf. Process. Landf., 18(1 129.
Clark, C.D. and Stokes, C.R.. 2001. Extent and basal characteristics of the M'Clintock Channel palaeo ice stream. Quat. Int., 86(1 81101.
Dalziel, I.W.D. and Lawver, L.A.. 2001. The lithospheric setting of the West Antarctic ice sheet. In Alley, R.B. and R.A. Bindschadler, eds. The West Antarctic ice sheet: behavior and environment. Washington, DC, American Geophysical Union, 2944. (Antarctic Research Series 77.)
Dunlop, P. and Clark, C.D.. 2006. The morphological characteristics of ribbed moraine. Quat. Sci. Rev., 25(13-14), 16681691.
Evans, J. Dowdeswell, J.A. Cofaigh, C. O? Benham, T.J. and J.B. Anderson. 2006. Extent and dynamics of the West Antarctic Ice Sheet on the outer continental shelf of Pine Island Bay during the last glaciation. Mar. Geol., 230(1-2), 5372.
Fowler, A.C. 2002. Correspondence. Rheology of subglacial till. J. Glaciol., 48(163 631632.
Hindmarsh, R.C.A. 1998. The stability of a viscous till sheet coupled with ice flow, considered at wavelengths less than the ice thickness. J. Glaciol., 44(147 285292.
King, E.C. Woodward, J.M. and A.M. Smith. 2004. Seismic evidence for a water-filled canal in deforming till beneath Rutford Ice Stream,West Antarctica. Geophys. Res. Lett., 31(20 L20401 (10.1029/2004GL020379.)
Lowe, A.L. and Anderson, J.B.. 2003. Evidence for abundant subglacial meltwater beneath the paleo-ice sheet in Pine Island Bay, Antarctica. J. Glaciol., 49(164 125138.
Cofaigh, C., Ó Pudswey, C.J. Dowdeswell, J.A. and Morris., P. 2002. Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf. Geophys. Res. Lett., 29(8 1199. (10.1029/2001GL014488.)
Cofaigh, C., Ó and 6 others. 2005. Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream. Quat. Sci. Rev., 24(5-6), 709740.
Rose, J. 1987. Drumlins as part of a glacier bedform continuum. In Menzies, J. and J. Rose, eds. Drumlin Symposium. Rotterdam, A.A. Balkema, 103116.
Smith, A.M. 1997a. Basal conditions on Rutford Ice Stream, West Antarctica from seismic observations. J. Geophys. Res., 102(B1 543552.
Smith, A.M. 1997b. Variations in basal conditions on Rutford Ice Stream, West Antarctica. J. Glaciol., 43(144 251261.
Smith, A.M. and 6 others. 2007. Rapid erosion, drumlin formation and changing hydrology beneath an Antarctic ice stream. Geology, 35(2), 127130.
Stokes, C.R. and Clark, C.D.. 2002. Are long subglacial bedforms indicative of fast ice flow? Boreas, 31(3 239249.
Stokes, C.R. and Clark, C.D.. 2003a. Laurentide ice streaming on the Canadian Shield: a conflict with the sift-bedded ice stream paradigm? Geology, 31(4 347350.
Stokes, C.R. and Clark, C.D.. 2003b. The Dubawnt Lake palaeo ice-stream: evidence for dynamic ice sheet behaviour on the Canadian Shield and insights regarding the controls on ice-stream location and timing. Boreas, 32(1 263279.
Studinger, M. Bell, R.E. Blankenship, D.D. Finn, C.A. Arko, R.A. and D.L. Morse. 2001. Subglacial sediments: a regional geological template for ice flow in West Antarctica. Geophys. Res. Lett., 28(18 34933496.
Wellner, J.S. Lowe, A.L. Shipp, S.S. and J.B. Anderson. 2001. Distribution of glacial geomorphic features on the Antarctic continental shelf and correlation with substrate: implications for ice behavior. J. Glaciol., 47(158 397411.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed