Skip to main content
×
×
Home

Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream, Antarctica

  • J. Paul Winberry (a1), Sridhar Anandakrishnan (a2), Richard B. Alley (a2), Douglas A. Wiens (a3) and Martin J. Pratt (a3)...
Abstract

We summarize new observations of the deceleration and stick–slip motion of Whillans Ice Stream (WIS), Antarctica. We refine the location of the large sticky spots that resist motion between slip events, the locations of which are controlled by the patterns of subglacial water flow. Our examination of the long-term velocity time series for the ice stream reveals that the decadal-scale deceleration is not occurring at a steady rate, but varies at the sub-decadal timescale. This unsteady deceleration modulates the temporal evolution of a broad (~50 km across) surface-elevation bulge forming at the junction between the relatively narrow upstream portion of the ice stream and broad ice plain that constitutes the downstream end of WIS. Comparison of observations from April 2003 and November 2010 reveals significant changes in the tidally modulated stick–slip cycle that regulates motion on the ice plain. We observe that the timing of slip events has become less regular in response to decreased flow speed in the upstream portions of the ice stream. The decreased regularity of slip events has reduced the release of stored elastic strain during slip events, increasing the rate of deceleration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream, Antarctica
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream, Antarctica
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream, Antarctica
      Available formats
      ×
Copyright
References
Hide All
Abshire, JB and 7 others (2005) Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: on-orbit measurement performance. Geophys. Res. Lett., 32(21), L21S02 (doi: 10.1029/2005GL024028)
Alley, RB (1993) In search of ice-stream sticky spots. J. Glaciol., 39(133), 447454
Anandakrishnan, S, Voigt, DE, Alley, RB and King, MA (2003) Ice Stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf. Geophys. Res. Lett., 30(7), 1361 (doi: 10.1029/2002GL016329)
Bamber, JL, Gomez-Dans, JL and Griggs, JA (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: data and methods. Cryosphere, 3(1), 101111 (doi: 10.5194/tc-3–101–2009)
Beem, LH, Tulaczyk, SM, King, MA, Bougamont, M, Fricker, HA and Christoffersen, P (2014) Variable deceleration of Whillans Ice Stream, West Antarctica. J. Geophys. Res., 119(F2), 212224 (doi: 10.1002/2013JF002958)
Bindschadler, R (1993) Siple Coast Project research of Crary Ice Rise and the mouths of Ice Streams B and C, West Antarctica: review and new perspectives. J. Glaciol., 39(133), 538552
Bindschadler, RA, King, MA, Alley, RB, Anandakrishnan, S and Padman, L (2003) Tidally controlled stick–slip discharge of a West Antarctic ice stream. Science, 301(5636), 10871089 (doi: 10.1126/science.1087231)
Bindschadler, R, Vornberger, P and Gray, L (2005) Changes in the ice plain of Whillans Ice Stream, West Antarctica. J. Glaciol., 51(175), 620636 (doi: 10.3189/172756505781829070)
Blankenship, DD, Bentley, CR, Rooney, ST and Alley, RB (1987) Till beneath Ice Stream B. 1. Properties derived from seismic travel times. J. Geophys. Res., 92(B9), 89038911 (doi: 10.1029/JB092iB09p08903)
Borsa, AA, Moholdt, G, Fricker, HA and Brunt, KM (2014) A range correction for ICESat and its potential impact on ice-sheet mass balance studies. Cryosphere, 8(2), 345357 (doi: 10.5194/tc-8–345–2014)
Bougamont, M, Tulaczyk, S and Joughin, I (2003) Numerical investigations of the slow-down of Whillans Ice Stream, West Antarctica: is it shutting down like Ice Stream C? Ann. Glaciol., 37, 239246 (doi: 10.3189/172756403781815555)
Carter, SP, Fricker, HA and Siegfried, MR (2013) Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica. J. Glaciol., 59(218), 11471162 (doi: 10.3189/2013JoG13J085)
Csatho, B and 8 others (2005) ICESat measurements reveal complex pattern of elevation changes on Siple Coast ice streams, Antarctica. Geophys. Res. Lett., 32(23), L23S04 (doi: 10.1029/2005GL024289)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Denton, GH and Hughes, TJ (2002) Reconstructing the Antarctic ice sheet at the Last Glacial Maximum. Quat. Sci. Rev., 21(1–3), 193202 (doi: 10.1016/S0277–3791(01)00090–7)
Fretwell, P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393 (doi: 10.5194/tc-7–375–2013)
Fricker, HA and Scambos, T (2009) Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol., 55(190), 303315 (doi:10.3189/002214309788608813)
Fricker, HA, Scambos, T, Bindschadler, R and Padman, L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 15441548 (doi: 10.1126/science.1136897)
Fricker, HA, Scambos, T, Carter, S, Davis, C, Haran, T and Joughin, I (2010) Synthesizing multiple remote-sensing techniques for subglacial hydrologic mapping: application to a lake system beneath MacAyeal Ice Stream, West Antarctica. J. Glaciol., 56(196), 187199 (doi: 10.3189/002214310791968557)
Gold, LW (1958) Some observations on the dependence of strain on stress for ice. Can. J. Phys., 36(10), 12651275
Gudmundsson, GH (2006) Fortnightly variations in the flow velocity of Rutford Ice Stream, West Antarctica. Nature, 444(7122), 10631064 (doi: 10.1038/nature05430)
Hulbe, C and Fahnestock, M (2007) Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica. J. Geophys. Res., 112(F3), F03S27 (doi: 10.1029/2006JF000603)
Iverson, NR (2010) Shear resistance and continuity of subglacial till: hydrology rules. J. Glaciol., 56(200), 11041114 (doi: 10.3189/002214311796406220)
Joughin, I and 7 others (1999) Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science, 286(5438), 283286 (doi: 10.1126/science.286.5438.283)
Joughin, I, Tulaczyk, S, Bindschadler, RA and Price, S (2002) Changes in West Antarctic ice stream velocities: observation and analysis. J. Geophys. Res., 107(B11), 2289 (doi: 10.1029/2001JB001029)
Joughin, I and 10 others (2005) Continued deceleration of Whillans Ice Stream, West Antarctica. Geophys. Res. Lett., 32(22), L22501 (doi: 10.1029/2005GL024319)
Kamb, B (2001) Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley, RB and Bindschadler, RA eds. The West Antarctic ice sheet: behavior and environment. (Antarctic Research Series 77) American Geophysical Union, Washington, DC, 157199
Marone, C (1998) Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci., 26, 643696 (doi: 10.1146/annurev.earth26.1.643)
Padman, L, Erofeeva, S and Joughin, I (2003) Tides of the Ross Sea and Ross Ice Shelf cavity. Antarct. Sci., 15(1), 3140 (doi: 10.1017/S0954102003001032)
Parizek, BR, Alley, RB, Anandakrishnan, S and Conway, H (2002) Subcatchment melt and long-term stability of Ice Stream D, West Antarctica. Geophys. Res. Lett., 29(8), 551554 (doi: 10.1029/2001GL014326)
Payne, AJ (1998) Dynamics of the Siple Coast ice streams, West Antarctica: results from a thermomechanical ice sheet model. Geophys. Res. Lett., 25(16), 31733176 (doi: 10.1029/98GL52327)
Pratt, MJ, Winberry, JP, Wiens, DA, Anandakrishnan, S and Alley, RB (2014) Seismic and geodetic evidence for grounding-line control of Whillans Ice Stream stick–slip events. J. Geophys. Res., 119(F2), 333348 (doi: 10.1002/2013JF002842)
Pritchard, HD, Arthern, RJ, Vaughan, DG and Edwards, LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971975 (doi: 10.1038/nature08471)
Pritchard, HD, Ligtenberg, SRM, Fricker, HA, Vaughan, DG, Van den Broeke, MR and Padman, L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502505 (doi: 10.1038/nature10968)
Rignot, E, Mouginot, J and Scheuchl, B (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Scambos, TA, Haran, TM, Fahnestock, MA, Painter, TH and Bohlander, J (2007) MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111(2–3), 242257 (doi: 10.1016j.rse.2006.12.020)
Scheuchl, B, Mouginot, J and Rignot, E (2012) Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009. Cryosphere, 6(5), 10191030 (doi: 10.5194/tc-6–1019–2012)
Sergienko, OV and Hulbe, CL (2011) ‘Sticky spots’ and subglacial lakes under ice streams of the Siple Coast, Antarctica. Ann. Glaciol., 52(58), 1822 (doi: 10.3189/172756411797252176)
Sergienko, O, MacAyeal, DR and Bindschadler, RA (2009) Stick–slip behavior of ice streams: modeling investigations. Ann. Glaciol., 50(52), 8794 (doi: 10.3189/172756409789624274)
Shabtaie, S and Bentley, CR (1987) West Antarctic ice streams draining into the Ross Ice Shelf: configuration and mass balance. J. Geophys. Res., 92(B2), 13111336 (doi: 10.1029/JB092iB02p01311)
Shreve, RL (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205214
Smith, BE, Bentley, CR and Raymond, CF (2005) Recent elevation changes on the ice streams and ridges of the Ross Embayment from ICESat crossovers. Geophys. Res. Lett., 32(21), L21S09 (doi: 10.1029/2005GL024365)
Stearns, LA, Jezek, KC and Van der Veen, CJ (2005) Decadal-scale variations in ice flow along Whillans Ice Stream and its tributaries, West Antarctica. J. Glaciol., 51(172), 147157(doi:10.3189/172756505781829610)
Stephenson, SN and Bindschadler, RA (1988) Observed velocity fluctuations on a major Antarctic ice stream. Nature, 334(6184), 695697 (doi: 10.1038/334695a0)
Vogel, SW and 7 others (2005) Subglacial conditions during and after stoppage of an Antarctic Ice Stream: is reactivation imminent? Geophys. Res. Lett., 32(14), L14502 (doi: 10.1029/2005GL022563)
Walter, JI, Brodsky, EE, Tulaczyk, S, Schwartz, SY and Pettersson, R (2011) Transient slip events from near-field seismic and geodetic data on a glacier fault, Whillans Ice Plain, West Antarctica. J. Geophys. Res., 116(F1), F01021 (doi: 10.1029/2010JF001754)
Whillans, IM, Bolzan, J and Shabtaie, S (1987) Velocity of Ice Streams B and C, Antarctica. J. Geophys. Res., 92(B9), 88958902 (doi: 10.1029/JB092iB09p08895)
Wiens, DA, Anandakrishnan, S, Winberry, JP and King, MA (2008) Simultaneous teleseismic and geodetic observations of the stick– slip motion of an Antarctic ice stream. Nature, 453(7196), 770774 (doi: 10.1038/nature06990)
Winberry, JP, Anandakrishnan, S, Alley, RB, Bindschadler, RA and King, MA (2009) Basal mechanics of ice streams: insights from the stick–slip motion of Whillans Ice Stream, West Antarctica. J. Geophys. Res., 114(F1), F01016 (doi: 10.1029/2008JF001035)
Winberry, JP, Anandakrishnan, S, Wiens, DA, Alley, RB and Christianson, K (2011) Dynamics of stick–slip motion, Whillans Ice Stream, Antarctica. Earth Planet. Sci. Lett., 305(3–4), 283289 (doi: 10.1016/j.epsl.2011.02.052)
Zoet, LK, Anandakrishnan, S, Alley, RB, Nyblade, AA and Wiens, DA (2012) Motion of an Antarctic glacier by repeated tidally modulated earthquakes. Nature Geosci., 5(9), 623626 (doi: 10.1038/ngeo1555)
Zoet, LK and 6 others (2013) The effects of entrained debris on the basal sliding stability of a glacier. J. Geophys. Res., 118(F2), 656666 (doi: 10.1002/jgrf.20052)
Zumberge, JF, Heflin, MB, Jefferson, DC, Watkins, MM and Webb, FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102(B3), 50055017 (doi: 10.1029/96JB03860)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 14
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 190 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 17th August 2018. This data will be updated every 24 hours.