Home

# Two-dimensional similarity solutions for finite-mass granular avalanches with coulomb- and viscous-type frictional resistance

Abstract

This paper is concerned with the motion of an unconfined finite mass of granular material down an inclined plane when released from a rest position in the shape of a circular or elliptical paraboloid. The granular mass is treated as a frictional Coulomb-like continuum with a constant angle of internal friction. The basal friction force is assumed to be composed of a Coulomb-type component with a bed-friction angle that is position-dependent and a viscous Voellmy-type resistive stress that is proportional to the velocity squared. The model equations are those of Hutter and others (in press b) and form a spatially two-dimensional set for the evolution of the avalanche height and the depth averaged in-plane velocity components; they hold for a motion of a granular mass along a plane surface.

Similarity solutions, i.e. solutions which preserve the shape and the structure of the velocity field, are constructed by decomposing the motion into that of the centre of mass and the deformation relative to it. This decomposition is possible provided the effect of the Voellmy drag on the deformation is ignored. With it, the depth and velocities relative to those of the centre of mass of the moving pile can be determined analytically. It is shown that the pile has a parabolic cap shape and contour lines are elliptical. The semi-axes and the position and velocity of the centre of mass are calculated numerically. We explicitly show that (i)

For two-dimensional spreading, a rigid-body motion does not exist, no matter what be the values of the bed-friction angle and the coefficient of viscous drag.

(ii)

A steady final velocity of the centre of the mass cannot be assumed, but the motion of the centre of mass depends strongly on the value of the Voellmy coefficient.

(iii)

The geometry of the moving pile depends on the variation of the bed-friction angle with position, as well as on the value of the coefficient of viscous drag.

• Send article to Kindle

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Two-dimensional similarity solutions for finite-mass granular avalanches with coulomb- and viscous-type frictional resistance
Available formats
×
Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Two-dimensional similarity solutions for finite-mass granular avalanches with coulomb- and viscous-type frictional resistance
Available formats
×

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Two-dimensional similarity solutions for finite-mass granular avalanches with coulomb- and viscous-type frictional resistance
Available formats
×
References
Hide All
Alean, J. 1984. Untersuchungen über Entstehungsbedingungen und Reichweiten von Eislawinen. Eid. Tech. Hochschule, Zürich. Versuchsanst. Wasserbau, Hydrol. Glazial. Mitt. 74.
Alean, J. 1985. Ice avalanche activity and mass balance of a high altitude hanging glacier in the Swiss Alps. Ann. Glacial, 6, 248249.
Beghin, P., Hopfinger, E.J. and Britter, R.E. 1981. Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech., 107, 407422.
Greve, R. and Hutter, K. 1993. Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions. Phil. Trans. R. Soc. Land., Ser. A, 342, 573600.
Gubler, H. 1987. Measurements and modelling of snow avalanche speeds. International Association of Hydrological Sciences Publication 162 (Symposium at Davos 1986 – Avalanche Formation, Movement and Effects), 405120.
Gubler, H. 1989. Comparison of three models of avalanche dynamics. Ann. Glacial., 13, 8289.
Gubler, H. Unpublished. Messungen an Fliesslawinen. Eidgenässisches Institut für Schnee- und Lawinenforschung (EISLF), Weissfluhjoch/Davos, Switzerland. Interner Bericht 600, 1981.
Gubler, H. and Hiller, M. 1984. The use of microwave FMCW radar in snow and avalanche research. Gold Reg. Sei. Technol., 9 (2), 109119.
Hermann, F. and Hutter, K. 1991. Laboratory experiments on the dynamics of powder-snow avalanches in the run-out zone. J. Glacial, 37 (126), 281295.
Hopfinger, E.J. 1983. Snow avalanche motion and related phenomena. Annu. Rev. Fluid Mech., 15, 4776.
Hopfinger, E.J. and Beghin, P. 1980. Buoyant clouds appreciably heavier than the ambient fluid on sloping boundaries. In IAHR. International Association for Hydraulic Research. Second International Symposium on Stratified Flows, Trondheim, 495504.
Hsü, K. 1975. On Sturzstroms – catastrophic debris streams generated by rockfalls. Geol. Soc. Am. Bull, 86, 129140.
Hsü, K., Hutter, K. 1978. Lawinendynamik, eine Übersicht. Schweizer Ingenieur und Architekt, 13, 259269.
Hutter, K. and Koch, T. 1991. Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Philos. Trans. R. Soc. London, Ser. A, 334, 93138.
Hutter, K. and Nohguchi, Y. 1990. Similarity solutions for a Voellmy model of snow avalanches with finite mass. Acta Mech., 82, 99127.
Hutter, K. and Savage, S.B. 1988a. Avalanche dynamics: the motion of a finite mass of gravel down a mountain side. Proceedings of the 5th International Symposium on Landslides, July 10–15, 1989, Lausanne, Switzerland. In Bonnard, C. ed., 691697.
Hutter, K. and Savage, S.B. 1988b. Granular avalanches. Theory and laboratory experiments. A review of new developments. Internationale Symposium, Interprae-vent 1988, Graz. Tagungs-publikation, Vol.3, 251266.
Hutter, K., Koch, T., Plüss, C. and Savage, S.B. In press a. Dynamics of avalanches of granular materials from initiation to runout. Part II. Laboratory experiments. Acta Mech.
Hutter, K., Siegel, N., Savage, S.B. and Nohguchi, Y. In press b. Two dimensional spreading of a granular avalanche down an inclined plane. Part I. Theory. Acta Mech.
Lang, T.E. and Martinelli, M. Jr., 1979. Application of numerical transient fluid dynamics to snow avalanche flow. Part II. Avalanche modeling and parameter error evaluation. J. Glaciol, 22 (86), 117126.
Lang, R.M., Leo, B.R. and Hutter, K. 1989. Flow characteristics of an unconstrained, non-cohesive, granular medium down an inclined curved surface. Ann. Glaciol, 13, 146153.
Nohguchi, Y., Hutter, K. and Savage, S.B. 1989. Similarity solutions for granular avalanches of finite mass with variable bed friction and rigid body motion. Continuum Mechanics and Thermodynamics, 1, 239265.
Norem, H. and Kristensen, K. 1988. The Ryggfonn project. Avalanche data from the winter 1987/88. Oslo, Norwegian Geotechnical Institute. (Report 5812012.)
Norem, H., Kristensen, K. and Tronstad, K. 1986. The Ryggfonn project. Avalanche data from the winter 1984)85. Oslo, Norwegian Geotechnical Institute. (Report 581208.)
Norem, H., Kristensen, K. and Tronstad, K. 1988. The Ryggfonn project. Avalanche data from the winter 1986/87. Oslo, Norwegian Geotechnical Institute. (Report 5812010.)
Perla, R.I. and Martinelli, M.,Jr. 1978. Avalanche handbook. U.S. Dep. Agrie. For. Sew. Agrie. Handb. 489.
Perla, R.I., Cheng, T.T. and McClung, D.M. 1980. A two-parameter model of snow avalanche motion. J. Glaciol., 26 (94), 197207.
Salm, B. 1966. Contribution to avalanche dynamics. International Association of Scientific Hydrology Publication 69 (Symposium at Davos 1969 – Scientific Aspects of Snow and Ice Avalanches), 199214.
Salm, Β. 1968. On nonuniform, steady flow of avalanching snow. International Association of Scientific Hydrology Publication 79 {General Assembly of Bern 1967 – Snow and Ice), 1929.
Savage, S.B. and Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177215.
Savage, S.B. and Hutter, K. 1991. Dynamics of avalanches of granular materials from initiation to runout. Part I. Analysis. Acta Mech., 86, 201223.
Savage, S.B. and Nohguchi, Y. 1988. Similarity solutions for avalanches of granular materials down curved beds. Acta Mech., 75, 153174.
Scheiwiller, T. 1986. Dynamics of powder snow avalanches. (Ph.D. thesis, Eidgenässische Technische Hochschule, Züich.)
Scheiwiller, T. and Hutter, K. 1982. Lawinendynamik.Übersicht über Experimente und theoretische Modelle von Fliess- und Staublawinen.Eid. Teck. Hockschule, Zürich. Versuchsanst. Wasserbau, Hydrol. Glaziol. Mitt. 58.
Scheiwiller, T., Hutter, K. and Hermann, F. 1987. Dynamics of powder snow avalanches. Annales Geo-physicae, 5B (6), 569588.
Tochon-Danguy, J.-C. 1977. Øtude des courants de gravitée sur forte pente avec application aux avalanches poudreuses. (Thèse, Université de Grenoble.)
Tochon-Danguy, J.-C. and Hopfinger, E.J. 1975. Simulation of the dynamics of powder avalanches. International Association of Hydrological Sciences Publication 114 (Symposium at Grindelwald 1974 – Snow Mechanics), 369380.
Vila, J.P. 1987. La prévision des vagues produites par la chute d’une avalanche dans une retenue. International Association of Hydrological Sciences 162 (Symposium at Davos 1986 – Avalanche Formation, Movement and Effects), 509518.
Voellmy, A. 1955. Über die Zerstörungskraft von Lawinen. Schweiz. Bauztg, 73, 159162, 212217, 246249, 280285.
Recommend this journal

Journal of Glaciology
• ISSN: 0022-1430
• EISSN: 1727-5652
• URL: /core/journals/journal-of-glaciology
Who would you like to send this to? *

×

## Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *